DOI QR코드

DOI QR Code

Physicochemical and pasting properties of rice starches from soft rice varieties developed by endosperm mutation breeding

배유 돌연변이처리로 개발된 연질미 전분의 이화학적 특성

  • Kim, Jae Suk (Division of Food and Nutrition, Chonnam National University) ;
  • No, Junhee (Division of Food and Nutrition, Chonnam National University) ;
  • Shin, Malshick (Division of Food and Nutrition, Chonnam National University)
  • 김재숙 (전남대학교 식품영양과학부) ;
  • 노준희 (전남대학교 식품영양과학부) ;
  • 신말식 (전남대학교 식품영양과학부)
  • Received : 2019.02.28
  • Accepted : 2019.03.23
  • Published : 2019.04.30

Abstract

The soft rice varieties, Hangaru and Singil, were developed via mutation breeding using N-methyl-N-nitrosourea treatment to obtain dry-milled rice flours. The physicochemical, morphological, and pasting properties of these starches were compared with those of Seolgaeng and Chuchung starches. Singil starch was found to exhibit the highest amylose content and initial pasting temperature, whereas Hangaru starch exhibited the highest water binding capacity and swelling power. Hangaru starch's granule size at $d_{50}$ was the largest among the four different starch types. Some Seolgaeng, Hangaru, and Singil granules were observed to have a round-faced polygon shape. Furthermore, the crystallinity of all four starch types was type A. The peak, trough, and final viscosities of the soft rice starches were also lower than those of normal starches. Notably, Hangaru starch showed the highest breakdown viscosity, but the lowest total setback viscosity among the four starches. From these results, the starch characteristics of the soft rice flours were discovered to be different based on the rice variety.

건식제분 쌀가루를 제조하기 위해 MNU로 돌연변이 처리하여 육종한 한가루와 신길의 가공적성을 확인하기 위하여 쌀의 80%를 차지하는 전분의 이화학적, 형태적 및 호화특성을 일반벼인 추청과 설갱 전분과 비교하였다. 신길전분의 아밀로스 함량은 27.1%로 나머지 쌀 전분은 16.5-19.5%이었다. 물결합능력과 팽윤력은 한가루 전분이 가장 높았고 전분입자의 크기($d_{50}$)도 가장 컸다. 전분입자의 형태는 설갱, 한가루, 신길전분의 전분입자 형태는 일부 한 면이 둥근 입자가 다면체 입자와 혼합되어 있었다. X-선 회절도에 의한 결정형은 모두 A형이었으며 호화개시온도는 신길전분이 $92.1^{\circ}C$로 가장 높고 한가루와 신길전분 호화액의 피크, 최저 및 최종점도가 추청과 설갱 전분보다 낮았다. 한가루 전분은 breakdown점도가 가장 컸으며 total setback점도는 가장 낮았다. 이와 같은 결과로부터 연질미 쌀가루의 전분 특성은 품종에 따라 다름을 확인하여 품종 별 쌀가루 특성과 가공성을 연구하여 전분과의 상관성을 비교해야 될 것이다.

Keywords

SPGHB5_2019_v51n2_109_f0001.png 이미지

Fig. 1. Light microphotographs of soft rice and wheat starches.

SPGHB5_2019_v51n2_109_f0002.png 이미지

Fig. 2. Scanning electron microphotographs of rice starches with different magnification (2,000× and 5,000×).

SPGHB5_2019_v51n2_109_f0003.png 이미지

Fig. 3. X-ray diffraction patterns of soft rice and normal rice starches.

Table 1. Moisture contents and physicochemical properties of rice starches

SPGHB5_2019_v51n2_109_t0001.png 이미지

Table 2. Pasting viscosities of soft rice and normal rice starches

SPGHB5_2019_v51n2_109_t0002.png 이미지

References

  1. AACCI. Approved Method of the American Association of Cereal Chemists 11th ed. AACC International, St. Paul, MN, USA (2012)
  2. Chiang PY, Yeh AI. Effect of soaking on wet-milling of rice. J. Cereal Sci. 35: 85-94 (2002) https://doi.org/10.1006/jcrs.2001.0419
  3. Cho JH. 'Singil rice' is easy to make rice flour and it could be improved value of products. Available from: http://www.hortitimes.com/news/articleView.html?idxno=8337. Accessed Oct. 15, 2018.
  4. Choi HC, Ahn SN, Hong HC, Kim YK, Hwang HG, Kim TY. New mutants of specialty rice induced from Ilpumbyeo, a high-quality rice cultivar, by MNU (N-methyl-N-nitrosourea) treatment on fertilized egg cells. Korean J. Breed. Sci. 38: 154-160 (2006)
  5. Fujita N. Starch biosynthesis in rice endosperm. Agri. Bioscience Monographs 4: 1-18 (2014) https://doi.org/10.5047/agbm.2014.00401.0001
  6. Fujita N, Satoh R, Hayashi A, Kodama M, Itoh R, Aihara S, Nakamura Y. Starch biosynthesis in rice endosperm requires the presence of either starch synthase I or IIIa. J. Exp. Bot. 62: 4819-4831 (2011) https://doi.org/10.1093/jxb/err125
  7. Hong HC, Moon HP, Choi HC, Hwang HG, Kim YG, Kim HY, Yea JD, Shin YS, Kang KH, Choi YH, Cho YC, Back MK, Yang CI, Choi IS, Ahn SN, Yang SJ. A lodging tolerant, opaque rice cultivar 'Seolgaeng'. Korean J. Breed. Sci. 43: 532-537 (2011)
  8. Jeong O, Shin M. Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch. Food Chem. 256: 77-84 (2018) https://doi.org/10.1016/j.foodchem.2018.02.098
  9. Korean statistical information service (KOSIS). 2019. Food Grain Consumption Survey Report in 2018 http://kosis.kr/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ZTITLE&parmTabId=M_01_01 Accessed Jan. 22, 2019.
  10. Kwak J, Yoon MR, Lee JS, Lee JH, Ko S, Tai TH, Won YJ. Morphological and starch characteristics of the Japonica rice mutant variety Seolgang for dry-milled flour. Food Sci. Biotechnol. 26: 43-48 (2017) https://doi.org/10.1007/s10068-017-0006-5
  11. Leewatchararongjaroen J, Anuntagool J. Effect of dry-and wet-milling on chemical, physical and gelatinization properties of flour from nine rice Oryza sativa L. cultivars. Rice Sci. 23: 274-281 (2016) https://doi.org/10.1016/j.rsci.2016.08.005
  12. Medcalf DG, Gilles KA. Wheat starches. I. Comparison of physicochemical properties. Cereal Chem. 42: 558-568 (1965)
  13. Nagato K. On the hardness of rice endosperm. Japanese J. Crop Sci. 31: 102-107 (1962) https://doi.org/10.1626/jcs.31.102
  14. No J, Lee CE, Shin M. Granular morphology and thermal properties of acid-hydrolyzed rice starches with different amylose contents. Korean J. Food Cook. Sci. 33: 307-315 (2017) https://doi.org/10.9724/kfcs.2017.33.3.307
  15. Nongsaro. Rice breed information of Singil. Available from: http://www.nongsaro.go.kr/portal/remoteFileView.do?url=http://atis.rda.go.kr/rdais/commonModule/fileDownloadToApp.vw?file_name=%2Fatis%2Fspciesoutput. Accessed Nov. 20, 2018.
  16. Nonsaro. Rice breed information of Hangaru. Available from: http://www.nongsaro.go.kr/portal/ps/psz/psza/contentMain.ps?menuId=PS00112&pageIndex=1&pageSize=10&tabAt=FC&cntntsNo=&sCropsCode=FC&sCropsNm=&sMtrtSeCode=&sSkllSeCode=&sGrdlSeCode=&sUnbrngYear=&sSrchType=&oriPrdlstCtg-Code=&viewType=ajaxLst&chkType=notYear&sText=%ED%95%9C%EA%B0%80%EB%A3%A8&sType=sNmSjInfo&detSchCode=N. Accessed Jan. 30, 2019.
  17. Satoh H, Matsusaka H, Kumamaru T. Use of N-methyl-N-nitrosourea treatment of fertilized egg cells for saturation mutagenesis of rice. Breeding Sci. 60: 475-485 (2010) https://doi.org/10.1270/jsbbs.60.475
  18. Schoch TJ. Swelling power and solubility of granular starches. Vol IV. pp. 106-108. In: Methods in Carbohydrate Chemistry. Whistler RL (ed). Academic Press, New York, NY, USA (1964)
  19. Song JY, Shin M. Effects of soaking and particle sizes on the properties of rice flour and gluten-free rice bread. Food Sci. Biotechnol. 16: 759-764 (2007)
  20. Tamaki M, Kurita S, Toyomaru M, Tsuchiya T. Hardness distribution and endosperm structure on polishing characteristics of brewer's rice kernels. Plant Prod. Sci. 10: 481-487 (2007) https://doi.org/10.1626/pps.10.481
  21. Yoon MR, Chun A, Oh S, Ko S, Kim D, Hong H, Choi I, Lee J. Physicochemical properties of endosperm starch and breadmaking quality of rice cultivars. Korean J. Crop Sci. 56: 219-225 (2001) https://doi.org/10.7740/kjcs.2011.56.3.219
  22. Yun MS, Kawagoe Y. Septum formation in amyloplasts produces compound granules in the rice endosperm and is regulated by plastid division proteins. Plant Cell Physiol. 51: 1469-1479 (2010) https://doi.org/10.1093/pcp/pcq116
  23. Webb BD, Pomeranz Y, Afework S, Lai FS, Bollich CN. Rice grain hardness and its relationship to some milling, cooking, and processing characteristics. Cereal Chem. 63: 27-30 (1986)
  24. Wikipedia. Japonica rice. Available from: https://ko.wikipedia.org/wiki/%EC%9E%90%ED%8F%AC%EB%8B%88%EC%B9%B4%EC%8C%80. Accessed Jan. 30, 2019.
  25. Williams PC, Kuzina FD, Hlynka I. Rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chem. 47: 411-420 (1970)