DOI QR코드

DOI QR Code

Correlation between Cytokine and Chemokine levels and Clinical Severity in Children with Mycoplasma pneumoniae Pneumonia

  • Choi, Hee Joung (Department of Pediatrics, Keimyung University School of Medicine) ;
  • Kim, Yeo Hyang (Department of Pediatrics, School of Medicine, Kyungpook National University)
  • Received : 2018.06.08
  • Accepted : 2018.11.07
  • Published : 2019.04.25

Abstract

Purpose: The aim of this study was to evaluate the relationships between cytokine and chemokine levels and the clinical severity of Mycoplasma pneumoniae pneumonia. Methods: A retrospective analysis of clinical and laboratory parameters were performed. Serum levels of interleukin (IL)-6, IL-8, IL-10, IL-18, interferon-${\gamma}$-inducible protein-10 (IP-10), macrophage inflammatory $protein-1{\beta}$, and tumor necrosis $factor-{\alpha}$ were measured. The severity of patients' clinical course and radiologic findings were also assessed. Results: Seventy-two patients (35 males and 37 females) with a median age of 3.9 years (range, 1-16 years) were enrolled. Patients with lobar pneumonia (n=29) had significantly higher C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and IL-18 values than those with broncho-interstitial pneumonia (n=43). However, the cytokine and chemokine values did not differ between the group that was treated with corticosteroids (n=31) and the one that was not (n=41). The CRP, ESR, lactate dehydrogenase (LDH), IL-18, and IP-10 values showed positive correlations with fever duration prior to admission. The CRP and ESR values were positively correlated with IL-18, and LDH, with IP-10 levels. Conclusions: CRP, ESR, LDH, IL-18, and IP-10 values were associated with the severity of the disease, manifesting lobar pneumonia or prolonged fever duration prior to admission.

목적: 소아 마이코플라즈마 폐렴의 임상 중증도와 cytokine, chemokine의 상관 관계를 살펴보았다. 방법: 대상 환아의 임상소견과 검사소견을 후향적으로 조사하였고, interleukin (IL)-6, IL-8, IL-10, IL-18, inducible protein (IP)-10, macrophage inflammatory protein $(MIP)-1{\beta}$와 tumor necrosis factor $(TNF)-{\alpha}$를 비교 분석하였다. 결과: 총 72명이 포함되었고, 흉부 사진에서 대엽성 병변을 보이는 경우(29명)에서 기관지-미만성 병변을 보이는 경우(43명)보다 erythrocyte sedimentation rate (ESR), C-reactive protein (CRP)와 IL-18 수치가 의미 있게 높았다. 하지만, 스테로이드 사용 여부에 따른 차이는 보이지 않았다. CRP, ESR, lactate dehydrogenase (LDH), IL-18 그리고 IP-10 수치는 입원 전 발열 기간과 양의 상관관계를 보였다. 또한 ESR과 CRP 수치는 IL-18과, LDH는 IP-10과 양의 상관관계를 보였다. 결론: CRP, ESR, IL-18 그리고 IP-10 수치는 대엽성 폐렴이나 긴 발열 기간과 같은 질병의 중증도와 연관성을 가진다.

Keywords

References

  1. Yang J, Hooper WC, Phillips DJ, Talkington DF. Cytokines in Mycoplasma pneumoniae infections. Cytokine Growth Factor Rev 2004;15:157-68. https://doi.org/10.1016/j.cytogfr.2004.01.001
  2. Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 2004;17:697-728. https://doi.org/10.1128/CMR.17.4.697-728.2004
  3. Youn YS, Lee KY. Mycoplasma pneumoniae pneumonia in children. Korean J Pediatr 2012;55:42-7. https://doi.org/10.3345/kjp.2012.55.2.42
  4. Akira S. The role of IL-18 in innate immunity. Curr Opin Immunol 2000;12:59-63. https://doi.org/10.1016/S0952-7915(99)00051-5
  5. Dinarello CA. Interleukin-18. Methods 1999;19:121-32. https://doi.org/10.1006/meth.1999.0837
  6. Chung HL, Kim SG, Shin IH. The relationship between serum endothelin (ET)-1 and wheezing status in the children with Mycoplasma pneumoniae pneumonia. Pediatr Allergy Immunol 2006;17:285-90. https://doi.org/10.1111/j.1399-3038.2006.00393.x
  7. Oishi T, Narita M, Matsui K, Shirai T, Matsuo M, Negishi J, et al. Clinical implications of interleukin-18 levels in pediatric patients with Mycoplasma pneumoniae pneumonia. J Infect Chemother 2011;17:803-6. https://doi.org/10.1007/s10156-011-0265-7
  8. Inamura N, Miyashita N, Hasegawa S, Kato A, Fukuda Y, Saitoh A, et al. Management of refractory Mycoplasma pneumoniae pneumonia: utility of measuring serum lactate dehydrogenase level. J Infect Chemother 2014;20:270-3. https://doi.org/10.1016/j.jiac.2014.01.001
  9. Bonecchi R, Galliera E, Borroni EM, Corsi MM, Locati M, Mantovani A. Chemokines and chemokine receptors: an overview. Front Biosci (Landmark Ed) 2009;14:540-51.
  10. Bradley JS, Byington CL, Shah SS, Alverson B, Carter ER, Harrison C, et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis 2011;53:e25-76. https://doi.org/10.1093/cid/cir531
  11. Haugen J, Chandyo RK, Brokstad KA, Mathisen M, Ulak M, Basnet S, et al. Cytokine concentrations in plasma from children with severe and non-severe community acquired pneumonia. PLoS One 2015;10:e0138978. https://doi.org/10.1371/journal.pone.0138978
  12. Paats MS, Bergen IM, Hanselaar WE, Groeninx van Zoelen EC, Hoogsteden HC, Hendriks RW, et al. Local and systemic cytokine profiles in nonsevere and severe community-acquired pneumonia. Eur Respir J 2013;41:1378-85. https://doi.org/10.1183/09031936.00060112
  13. Stuyt RJ, Netea MG, Verschueren I, Fantuzzi G, Dinarello CA, Van Der Meer JW, et al. Role of interleukin-18 in host defense against disseminated Candida albicans infection. Infect Immun 2002;70:3284-6. https://doi.org/10.1128/IAI.70.6.3284-3286.2002
  14. Lauw FN, Branger J, Florquin S, Speelman P, van Deventer SJ, Akira S, et al. IL-18 improves the early antimicrobial host response to pneumococcal pneumonia. J Immunol 2002;168:372-8. https://doi.org/10.4049/jimmunol.168.1.372
  15. Narita M, Tanaka H, Abe S, Yamada S, Kubota M, Togashi T. Close association between pulmonary disease manifestation in Mycoplasma pneumoniae infection and enhanced local production of interleukin-18 in the lung, independent of gamma interferon. Clin Diagn Lab Immunol 2000;7:909-14. https://doi.org/10.1128/CDLI.7.6.909-914.2000
  16. Tanaka H, Narita M, Teramoto S, Saikai T, Oashi K, Igarashi T, et al. Role of interleukin-18 and T-helper type 1 cytokines in the development of Mycoplasma pneumoniae pneumonia in adults. Chest 2002;121:1493-7. https://doi.org/10.1378/chest.121.5.1493
  17. Narita M, Tanaka H, Yamada S, Abe S, Ariga T, Sakiyama Y. Significant role of interleukin-8 in pathogenesis of pulmonary disease due to Mycoplasma pneumoniae infection. Clin Diagn Lab Immunol 2001;8:1028-30. https://doi.org/10.1128/CDLI.8.5.1028-1030.2001
  18. Chmura K, Bai X, Nakamura M, Kandasamy P, McGibney M, Kuronuma K, et al. Induction of IL-8 by Mycoplasma pneumoniae membrane in BEAS-2B cells. Am J Physiol Lung Cell Mol Physiol 2008;295:L220-30. https://doi.org/10.1152/ajplung.90204.2008
  19. Miyashita N, Kawai Y, Inamura N, Tanaka T, Akaike H, Teranishi H, et al. Setting a standard for the initiation of steroid therapy in refractory or severe Mycoplasma pneumoniae pneumonia in adolescents and adults. J Infect Chemother 2015;21:153-60. https://doi.org/10.1016/j.jiac.2014.10.008
  20. Wang M, Wang Y, Yan Y, Zhu C, Huang L, Shao X, et al. Clinical and laboratory profiles of refractory Mycoplasma pneumoniae pneumonia in children. Int J Infect Dis 2014;29:18-23. https://doi.org/10.1016/j.ijid.2014.07.020
  21. Zhang Y, Zhou Y, Li S, Yang D, Wu X, Chen Z. The clinical characteristics and predictors of refractory Mycoplasma pneumoniae pneumonia in children. PLoS One 2016;11:e0156465. https://doi.org/10.1371/journal.pone.0156465
  22. Matsuda K, Narita M, Sera N, Maeda E, Yoshitomi H, Ohya H, et al. Gene and cytokine profile analysis of macrolide-resistant Mycoplasma pneumoniae infection in Fukuoka, Japan. BMC Infect Dis 2013;13:591. https://doi.org/10.1186/1471-2334-13-591
  23. Yang EA, Lee KY. Additional corticosteroids or alternative antibiotics for the treatment of macrolideresistant Mycoplasma pneumoniae pneumonia. Korean J Pediatr 2017;60:245-7. https://doi.org/10.3345/kjp.2017.60.8.245
  24. Lu A, Wang C, Zhang X, Wang L, Qian L. Lactate dehydrogenase as a biomarker for prediction of refractory Mycoplasma pneumoniae pneumonia in children. Respir Care 2015;60:1469-75. https://doi.org/10.4187/respcare.03920