DOI QR코드

DOI QR Code

LoRa for LPWA Network: Overview and its Performance Enhancement Technologies

저전력광대역 네트워크를 위한 LoRa: 개요 및 성능향상 기술

  • Cho, Woong (Dept. Computer Engineering, Jungwon University)
  • 조웅 (중원대학교 컴퓨터공학과)
  • Received : 2019.02.18
  • Accepted : 2019.04.15
  • Published : 2019.04.30

Abstract

LPWA (Low Power Wide Area) networks have been considered as one of the technologies which can be implemented in IoT (Internet of Things) applications by providing less power and longer communication range compared with existing wireless technologies. In this paper, we investigate LoRa which is one of representative technologies for LPWA networks. First, we present general properties and several technologies of LPWA networks. Then, the technical specification, properties, and pros/cons of LoRa are studied. Finally, we discuss analysis of LoRa's performance and its ehancement technologies by focusing on physical layer and MAC (Medium Access Control) layer.

저전력광대역 (LPWA: Low Power Wide Area) 네트워크는 기존의 무선통신 기술들에 비해 저전력으로 장거리 통신을 가능하게 하여 사물인터넷의 여러 응용분야에서 적용될 수 있는 기술 중 하나로 고려되고 있다. 본 논문에서는 저전력광대역 네트워크의 대표적인 기술 중 하나인 LoRa (Long Range)에 대해 알아본다. 먼저 저전력광대역 네트워크의 일반적인 특징 및 관련 기술에 대해 소개한다. 그리고 LoRa의 기술개요, 특징 및 장단점을 소개한다. 마지막으로 LoRa의 성능분석 및 성능을 향상시키기 위해 필요한 기술들을 물리계층과 매체 접근제어 계층에 중점을 두고 논의한다.

Keywords

KCTSAD_2019_v14n2_283_f0001.png 이미지

그림 1. 통신방식에 따른 데이터 전송률과 통신반경 Fig. 1 Data rate and communication range depending on communication scheme

KCTSAD_2019_v14n2_283_f0002.png 이미지

그림 2. LoRa 시스템 구조 Fig. 2 LoRa system architecture

KCTSAD_2019_v14n2_283_f0003.png 이미지

그림 3. LoRa 프로토콜 구조 Fig. 3 LoRa protocol architecture

KCTSAD_2019_v14n2_283_f0004.png 이미지

그림 4. LoRa 단말장치 전송방식 Fig. 4 LoRa end-device classes

표 1. LPWA 기술 특징 비교 Table 1. Comparison of LPWA technical characteristics

KCTSAD_2019_v14n2_283_t0001.png 이미지

References

  1. W. Cho and J. Jang, "Safety message transmission technology for the elderly pedestrians at the conflict area: background and technology concept," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 3, 2015, pp. 413-418. https://doi.org/10.13067/JKIECS.2015.10.3.413
  2. B.-G. Kim, B.-H. Kwon, H.-B. Cho, and W. Cho, "Performance measurement of LTE based railway wireless communication systems in the testbed," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 5, 2017, pp. 755-761. https://doi.org/10.13067/JKIECS.2017.12.5.755
  3. J. Joo and J. Oh "Development of Lora wireless network based water supply control system for bare ground agriculture," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 6, 2018, pp. 1373-1378. https://doi.org/10.13067/JKIECS.2018.13.6.1373
  4. U. Raza, P. Kulkarni, an M. Sooriyabandara, "Low power wide area networks: an overview," IEEE Commun. Surveys & Tutorials, vol. 19, no. 2, 2017, pp. 855-873. https://doi.org/10.1109/COMST.2017.2652320
  5. H. Wang and A. O. Fapojuwo, "A survey of enabling technologies of low power and long range machine-to-machine communications," IEEE Commun. Surveys & Tutorials, vol. 19, no. 4, 2017, pp. 2621-2639. https://doi.org/10.1109/COMST.2017.2721379
  6. J. Xu, J. Yao, Wang, Z. Ming, K. Wu, and L. Chen, "Narrowband internet of things: evolutions, technologies, and open issues," IEEE Internet of Things J., vol. 5, no. 3, 2018, pp. 1449-1462. https://doi.org/10.1109/JIOT.2017.2783374
  7. C. H. Liao, G. Whu, D. Kuwabara, M. Suzuki, and H. Morikawa, "Multi-hop LoRa networks enabled by concurrent transmission," IEEE Access, vol. 5, 2017, pp. 21430-21446. https://doi.org/10.1109/ACCESS.2017.2755858
  8. W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue, and J. Prevotet, "Internet of mobile things: overview of LoRa WAN, DASH7, and NB-IoT in LPWANs standards and supported mobility," IEEE Commun. Surveys & Tutorials, Early access, 2018, pp. 1-1.
  9. R. S. Sinha, Y. Wei, and S.-H. Hwang, "A survey on LPWA technology: LoRa and NB-IoT," ICT Express, vol. 3, 2017, pp. 14-21. https://doi.org/10.1016/j.icte.2017.03.004
  10. Semtech, "LoRa Modulation basics," Application Notes, May 2015.
  11. L. Vangelista, "Frequency shift chirp modulation: the LoRa modulation," IEEE Signal Processing Letters, vol. 24, no. 12, 2017, pp. 1818-1821. https://doi.org/10.1109/LSP.2017.2762960
  12. T. Elshabrawy and J. Robert, "Closed-form approximation of LoRa modulation BER performance," IEEE Commun. Letters, vol. 22, no. 9, 2018, pp. 1778-1781. https://doi.org/10.1109/LCOMM.2018.2849718
  13. A. Hoeller, R. D. Souza, O. L. Lopez, H. Alves, M. D. N. Neto, and G. Brante, "Analysis and performance optimization of LoRa networks with time and antenna diversity," IEEE Access, vol. 6, 2018, pp. 32820-32829. https://doi.org/10.1109/ACCESS.2018.2839064
  14. N. Jovalekic, V. Drndarevic, I. Darby, M. Zennaro, E. Rietrosemoli, and F. Ricciato, "LoRa transceiver with improved characteristics," IEEE Wireless Commun. Letters, vol. 7, no. 6, 2018, pp. 1058-1061. https://doi.org/10.1109/LWC.2018.2855744
  15. B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin, "Improving reliability and scalability of LoRaWANs through lightweight scheduling," IEEE Internet of Things J., vol. 5, no. 3, 2018, pp. 1830-1842. https://doi.org/10.1109/JIOT.2018.2815150
  16. W. Jung, T. Yoon, D. Yoo, and H. Choi, "Evaluation of LoRa technology for safety management system in the indoor closed space," In Proc. summer Conf. of Korea Institute of Communication Science, Jeju, South Korea, June 2017, pp. 78-79.
  17. H. Lee and K. Ke, "Monitoring of large-area IoT sensor using a LoRa wireless mesh network system: design nad evaluation," IEEE Trans. on Instrumentation and measurement, vol. 67, no. 9, 2018, pp. 2177-2187. https://doi.org/10.1109/TIM.2018.2814082