DOI QR코드

DOI QR Code

전기차 기반의 1톤급 상용차용 통합공조 시스템에 관한 연구

A Study on Integrated Air-conditioning System for Electric Vehicle Based 1-ton Class Commercial Vehicle

  • 백수황 (호남대학교 미래자동차공학부) ;
  • 김철수 (호남대학교 미래자동차공학부)
  • 투고 : 2019.03.12
  • 심사 : 2019.04.15
  • 발행 : 2019.04.30

초록

본 논문은 전기차 기반의 1톤급 상용차용 통합공조 시스템에 관한 연구이다. 전기 상용차의 경우 화물의 승하차를 위해 문의 개폐가 빈번하게 이루어지기 때문에 열손실이 크게 발생한다. 따라서 냉난방 부하가 승용 전기차에 비해 더 크게 요구된다. 결과적으로 승객이 요구하는 열 쾌적성을 만족하기 위해서 냉난방 시스템이 소비하는 에너지가 승용 전기차 보다 크다. 이러한 단점을 극복하기 위해 효율적인 통합공조 시스템을 적용한 연구를 수행했다. 최종적으로 1톤급의 경상용 전기트럭의 상품성 개선과 전기트럭 분야의 산업 생태계 기반 확충을 위한 고효율 공조 시스템 개발을 위해 냉방을 위한 전동식 압축기와 난방을 위한 히트펌프 시스템의 구상 설계와 해석적 검증을 수행한다.

This paper is a study on integrated air-conditioning system for 1-ton class commercial vehicle based on electric vehicle. In the case of an electric commercial vehicle, since the opening and closing of the door is frequently performed in order to get in and out of the cargo, the heat loss largely occurs. Therefore, the heating and cooling load is required to be larger than the electric vehicle. As a result, the energy consumed by the heating and cooling system is larger than the passenger electric car in order to satisfy the heat comfort required by passengers. In order to overcome these disadvantages, we performed research using an efficient integrated air conditioning system. Finally, the design and analysis of a heat pump system for heating and a electrical compressor for cooling need to be proceed to develop a high-efficiency air conditioning system for improving the commerciality of 1 ton-class electric trucks and expanding the industrial ecosystem in the electric truck sector.

키워드

KCTSAD_2019_v14n2_361_f0001.png 이미지

그림 1. 차량 레이아웃 Fig. 1 Vehicle layout

KCTSAD_2019_v14n2_361_f0002.png 이미지

그림 2. 전기차 요구 난방 성능 대응을 위한 히트 펌프 시스템 목표 Fig. 2 Heat pump system target for heating performance of electric car requirement

KCTSAD_2019_v14n2_361_f0003.png 이미지

그림 3. 실차 적용을 위한 통합공조 시스템 레이아웃 Fig. 3 Layout of integrated air-conditioning system for electric vehicle

KCTSAD_2019_v14n2_361_f0004.png 이미지

그림 4. 전동식 압축기용 모터의 역기전력 특성 Fig. 4 B-EMF characteristic of motor for electric compressor

KCTSAD_2019_v14n2_361_f0005.png 이미지

그림 5. 전동식 압축기용 모터의 토크 특성 Fig. 5 Torque characteristic of motor for electric compressor

KCTSAD_2019_v14n2_361_f0006.png 이미지

그림 6. 모터의 자속밀도분포도 Fig. 6 Magnetic flux density distribution of motor

KCTSAD_2019_v14n2_361_f0007.png 이미지

그림 7. 인버터 구성 다이어그램 Fig. 7 Configuration diagram of inverter

KCTSAD_2019_v14n2_361_f0008.png 이미지

그림 8. 전동식 압축기 시제품 Fig. 8 Prototype of electric compressor

KCTSAD_2019_v14n2_361_f0009.png 이미지

그림 9. 냉방 모드에서의 유동 분포 Fig. 9 Flow distribution in cooling mode

KCTSAD_2019_v14n2_361_f0010.png 이미지

그림 10. 난방 모드에서의 유동 분포 Fig. 10 Flow distribution in heating mode

표 1. 차량의 주요 사양 Table 1. Main specifications of vehicle

KCTSAD_2019_v14n2_361_t0001.png 이미지

표 2. 전동식 압축기용 모터의 특성결과 Table 2. Characteristics of motor for electric compressor

KCTSAD_2019_v14n2_361_t0002.png 이미지

표 3. 냉방 및 난방 모드에서의 토출유량 비교 Table 3. Discharge flow rate in cooling and heating

KCTSAD_2019_v14n2_361_t0003.png 이미지

참고문헌

  1. C. Lin, H. Peng, J. Grizzle, and J. Kang, "Power management strategy for a parallel hybrid electric truck," IEEE Trans. Control Systems Technology, vol. 11, no. 6, Nov. 2003, pp. 839-849. https://doi.org/10.1109/TCST.2003.815606
  2. M. Yilmaz and P. Krein, "Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles," 2012 IEEE Int. Electric Vehicle Conf., Greenville, USA, Apr. 2012, pp. 1-8.
  3. O. Veneri, L. Ferraro, C. Capasso, and D. Iannuzzi, "Charging infrastructures for EV: Overview of technologies and issues," 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion, Bologna, Italy, Oct. 2012, pp. 1-6.
  4. U. Chukwu and S. Mahajan, "Real-Time Management of Power Systems With V2G Facility for Smart-Grid Applications," IEEE Trans. Sustainable Energy, vol. 5, no. 2, Apr. 2014, pp. 558-566. https://doi.org/10.1109/TSTE.2013.2273314
  5. A. Babin, N. Rizoug, T. Mesbahi, D. Boscher, Z. Hamdoun, and C. Larouci, "Total Cost of Ownership Improvement of Commercial Electric Vehicles Using Battery Sizing and Intelligent Charge Method," IEEE Trans. Industry Applications, vol. 54, no. 2, Mar.-Apr. 2018, pp. 1691-1700. https://doi.org/10.1109/TIA.2017.2784351
  6. S. Baek, "A study on educational contents of hybrid electric vehicle using real time monitoring system," J. of the Korea Institute of Electronic Communication Sciences, vol. 13. no. 2, 2018, pp. 443-448. https://doi.org/10.13067/JKIECS.2018.13.2.443
  7. S. Baek, "A Study on Contents for Education Using Actual Vehicle-based Electric Vehicle Diagnostic System," J. of the Korea Institute of Electronic Communication Sciences, vol. 13. no. 3, 2018, pp. 555-560. https://doi.org/10.13067/JKIECS.2018.13.3.555
  8. A. Boufaied, "A Diagnostic Approach for Advanced Tracking of Commercial Vehicles With Time Window Constraints," IEEE Trans. Intelligent Transportation Systems, vol. 14, no. 3, Sept. 2013, pp. 1470-1479. https://doi.org/10.1109/TITS.2013.2262635
  9. D. Wu, Y. Li, C. Du, H. Ding, Y. Li, X. Yang, and X. Lu, "Fast velocity trajectory planning and control algorithm of intelligent 4WD electric vehicle for energy saving using time-based MPC," IET Intelligent Transport Systems, vol. 13, no. 1, Jan. 2019, pp. 153-159. https://doi.org/10.1049/iet-its.2018.5103
  10. A. Risseh, H. Nee, and C. Goupil, "Electrical Power Conditioning System for Thermoelectric Waste Heat Recovery in Commercial Vehicles," IEEE Trans. Transportation Electrification, vol. 4, no. 2, June, 2018, pp. 548-562. https://doi.org/10.1109/TTE.2018.2796031
  11. S. Kwak, H. Kim, and J. Yang, "Design and implementation of oil pump control system driven by a brushless dc electric motor," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 1, Jan. 2014, pp. 83-90. https://doi.org/10.13067/JKIECS.2014.9.1.83
  12. U. Chukwu and S. Mahajan, "Real-Time Management of Power Systems With V2G Facility for Smart-Grid Applications," IEEE Trans. Sustainable Energy, vol. 5, no. 2, Apr. 2014, pp. 558-566. https://doi.org/10.1109/TSTE.2013.2273314
  13. T. Masuta and A. Yokoyama, "Supplementary Load Frequency Control by Use of a Number of Both Electric Vehicles and Heat Pump Water Heaters," IEEE Trans. Smart Grid, vol. 3, no. 3, Sept. 2012, pp. 1253-1262. https://doi.org/10.1109/TSG.2012.2194746
  14. D. Papadaskalopoulos, G. Strbac, P. Mancarella, M. Aunedi, and V. Stanojevic, "Decentralized Participation of Flexible Demand in Electricity Markets-Part II: Application With Electric Vehicles and Heat Pump Systems," IEEE Trans. Power Systems, vol. 28, no. 4, Nov. 2013, pp. 3667-3674. https://doi.org/10.1109/TPWRS.2013.2245687
  15. Y. Hung, Y. Lue, and H. Gu, "Development of a Thermal Management System for Energy Sources of an Electric Vehicle," IEEE/ASME Trans. Mechatronics, vol. 21, no. 1, Feb. 2016, pp. 402-411. https://doi.org/10.1109/TMECH.2015.2454851