DOI QR코드

DOI QR Code

AR/VR 마이크로 디스플레이 환경을 고려한 JPEG-LS 플랫폼 개발

A Development of JPEG-LS Platform for Mirco Display Environment in AR/VR Device.

  • 박현문 (전자부품연구원 SoC 플랫폼 연구센터) ;
  • 장영종 (전자부품연구원 SoC 플랫폼 연구센터) ;
  • 김병수 (전자부품연구원 SoC 플랫폼 연구센터) ;
  • 황태호 (전자부품연구원, SoC 플랫폼연구센터)
  • 투고 : 2018.12.13
  • 심사 : 2019.04.15
  • 발행 : 2019.04.30

초록

AR/VR 디바이스에서 무손실 이미지 압축을 위한 JPEG-LS(: LosSless) 코덱에서 SBT 기반 프레임 압축기술로 메모리와 지연을 줄이는 설계를 제안하였다. 제안된 JPEG 무손실 코덱은 주로 콘텍스트 모형화 및 업데이트, 픽셀과 오류 예측 그리고 메모리 블록으로 구성된다. 모든 블록은 실시간 영상처리를 위해 파이프라인 구조를 가지며, LOCO-I 압축 알고리즘에 SBT 코딩기반의 개선된 2차원 접근방식을 사용한다. 제시한 STB-FLC기법을 통해 Block-RAM 사이즈를 기존 유사연구보다 1/3로 줄이고 예측(prediction) 블록의 병렬 설계는 처리속도에 향상을 가져올 수 있었다.

This paper presents the design of a JPEG-LS codec for lossless image compression from AR/VR device. The proposed JPEG-LS(: LosSless) codec is mainly composed of a context modeling block, a context update block, a pixel prediction block, a prediction error coding block, a data packetizer block, and a memory block. All operations are organized in a fully pipelined architecture for real time image processing and the LOCO-I compression algorithm using improved 2D approach to compliant with the SBT coding. Compared with a similar study in JPEG-LS, the Block-RAM size of proposed STB-FLC architecture is reduced to 1/3 compact and the parallel design of the predication block could improved the processing speed.

키워드

KCTSAD_2019_v14n2_417_f0001.png 이미지

그림 1. JPEG-LS 블록 다이어그램 Fig. 1 JPEG-LS block diagram

KCTSAD_2019_v14n2_417_f0002.png 이미지

그림 2. 모듈러 처리의 지역 기울기와 양자화 Fig. 2 Local gradients and quantization on the modeler

KCTSAD_2019_v14n2_417_f0004.png 이미지

그림 4. STB기반에 추가된 FLC 구조 Fig. 4 The FLC structure added to the STB based

KCTSAD_2019_v14n2_417_f0005.png 이미지

그림 5. 설계된 예측 블록 Fig. 5 Design of the prediction block

KCTSAD_2019_v14n2_417_f0006.png 이미지

그림 6. 콘텍스트 업데이트와 연결된 메모리 블록 Fig. 6 Context update and memory block

KCTSAD_2019_v14n2_417_f0007.png 이미지

그림 7. 구현된 FPGA에 합성 결과의 비교 Fig. 7 Comparison of synthesis results on implemented FPGA

KCTSAD_2019_v14n2_417_f0008.png 이미지

그림 8. 알고리즘 압축률(bpp)의 비교 Fig. 8 Compression rates(bpp) of algorithm

KCTSAD_2019_v14n2_417_f0009.png 이미지

그림 3. 개발한 JPEG-LS 구조 Fig. 3 Development of the JPEG-LS

참고문헌

  1. A. Descampe, J. Keinert, T. Richter, S. Fossel, and G. Rouvroy, "JPEG XS, a new standard for visually lossless low-latency lightweight image compression," Applications of Digital Image Processing XL : Int. Society for Optics and Photonics, California, USA, 2017, pp. 10360-103971.
  2. L. Xiaowen, C. Xinkai, X. Xiang, L. Guolin, Li Zhang, C. Zhang, and Z. Wang," A Low Power, Fully Pipelined JPEG-LS Encoder for Lossless Image Compression," IEEE Int. Conf. on Multimedia and Expo, Beijing, China, 2007, pp. 1906-1909.
  3. O. Palaz, H. Ugrdag, O. Ozkurt, B. Kertmen, and F. Donmez, "RImCom:Raster-order Image Compressor for Embedded Video Applications," J. of Signal Processing Systems, vol. 88, no. 2, 2017, pp. 149-165. https://doi.org/10.1007/s11265-016-1211-9
  4. M. Weinberger, J. Marcelo, G. Seroussi and G. Sapiro , "The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS." IEEE Tran. on Image processing, vol. 9, no. 8, 2000, pp. 1309-1324. https://doi.org/10.1109/83.855427
  5. K. Swarna and Y. Raju, "Implementation of soft processor based SOC for JPEG compression on FPGA," ICTACT j. on microelectronics, vol. 1, no. 1, 2015, pp. 1-7. https://doi.org/10.21917/ijme.2015.0001
  6. K. Swarna and Y. Raju, "FPGA Based JPEG-LS Encoder for Onboard Real-time Lossless Image Compression," Proc. SPIE 9501, Satellite Data Com., Communications, and Processing XI, Maryland, USA, 2015, pp. 1-8.
  7. J. Kim and C. Kyung, "A Lossless Embedded Compression Using Significant Bit Truncation for HD Video Coding," IEEE Trans. on Circuits and Systems for video technology, vol. 20, no. 6, 2010, pp 848-860. https://doi.org/10.1109/TCSVT.2010.2045923
  8. S. Martucci, "Reversible compression of HDTV images using median adaptive prediction and arithmetic coding," In Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), New Orleans, USA, 1990, pp. 1310-1313.
  9. J. Nikara, S. Vassiliadis, J. Takala, and P. Liuha, "Multiple-symbol parallel decoding for variable length codes," IEEE Trans. Very-LargeScale Integr. Syst., vol. 12, no. 7, 2004, pp. 676-685. https://doi.org/10.1109/TVLSI.2004.825840
  10. M. Ferretti and M. Boffadossi, "A parallel pipelined implementation of LOCO-I for JPEG-LS," IEEE int. Conf. Cambridge, UK, 2004, pp. 1-4.
  11. A. Savakis and M. Pioriun, "Benchmarking and Hardware Implementation of JPEG-LS," Int. Confer. on Image Processing, Rochester, New York, USA, 2002, pp. 1-4.
  12. Xiph Foundation, 'open source, multimediarelated projects: opus 1.2,' online:xiph, 2017.
  13. X. Li, X. Xie, X. Chen, G, Li, L. Wang, Z. Wang, and H. Chen, "Design and Implementation of a Low Complexity Near-lossless Image Compression Method for Wireless Endoscopy Capsule System," IEEE Inter. Sym. on Circuits and Systems, Los Angeles, USA, 2007, pp. 1321-1324.
  14. X. Xie, G. Li, and X. Li, "A New Approach for Near-lossless and Lossless Image Compression with Bayer Color Filter Arrays," Third Int. Conf. on Image and Graphics, Hong Kong, China, 2004, pp. 357-360.
  15. C. Cho and G. Kim "Implementation of Medical Diagnostic Information System and Conformance Test of Medical Image in Mobile Environment," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 6, 2015, pp. 713-720. https://doi.org/10.13067/JKIECS.2015.10.6.713
  16. Y. Kim "Progressive Image Coding using Wavelet Transform," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 1, 2014, pp. 33-40. https://doi.org/10.13067/JKIECS.2014.9.1.33
  17. C. Lee, J. Ryu, and J. Lee "Still Image Improvement of Adaptative DWT(Discrete wavelet transform) Decomposition Level Through the Implementation of JPEG2000 Hardware," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 6, 2018, pp. 1343-1352 https://doi.org/10.13067/JKIECS.2018.13.6.1343