DOI QR코드

DOI QR Code

Fast Abnormal Grain Growth Behavior and Electric Properties of Lead-Free Piezoelectric (K,Na)NbO3-Ba(Cu,Nb)O3 Grains through Transient Liquid Phase

과 액상 형성에 의한 비납계 압전 (Na,K)NbO3-Ba(Cu,Nb)O3 결정립의 비정상 성장 거동 및 전기적 특성

  • Lim, Ji-Ho (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Ju-Seung (Department of Materials Science and Engineering, Inha University) ;
  • Lee, SeungHee (Department of Materials Science and Engineering, Inha University) ;
  • Jung, Han-Bo (Department of Materials Science and Engineering, Inha University) ;
  • Park, Chun-kil (Department of Materials Science and Engineering, Inha University) ;
  • Ahn, Cheol-Woo (Functional Ceramics Department, Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Yoo, Il-Ryeol (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Kyung-Hoon (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Jeong, Dae-Yong (Department of Materials Science and Engineering, Inha University)
  • 임지호 (인하대학교 신소재공학과) ;
  • 이주승 (인하대학교 신소재공학과) ;
  • 이승희 (인하대학교 신소재공학과) ;
  • 정한보 (인하대학교 신소재공학과) ;
  • 박춘길 (인하대학교 신소재공학과) ;
  • 안철우 (한국기계연구원 부설 재료연구소) ;
  • 유일열 (금오공과대학교 신소재공학과) ;
  • 조경훈 (금오공과대학교 신소재공학과) ;
  • 정대용 (인하대학교 신소재공학과)
  • Received : 2019.02.20
  • Accepted : 2019.03.08
  • Published : 2019.04.27

Abstract

$Pb(Zr,Ti)O_3$ (PZT) is used for the various piezoelectric devices owing to its high piezoelectric properties. However, lead (Pb), which is contained in PZT, causes various environment contaminations. $(K,Na)NbO_3$ (NKN) is the most well-known candidate for a lead-free composition to replace PZT. A single crystal has excellent piezoelectric-properties and its properties can be changed by changing the orientation direction. It is hard to fabricate a NKN single crystal due to the sodium and potassium. Thus, $(Na,K)NbO_3-Ba(Cu,Nb)O_3$ (NKN-BCuN) is chosen to fabricate the single crystal with relative ease. NKN-BCuN pellets consist of two parts, yellow single crystals and gray poly-crystals that contain copper. The area that has a large amount of copper particles may melt at low temperature but not the other areas. The liquid phase may be responsible for the abnormal grain growth in NKN-BCuN ceramics. The dielectric constant and tan ${\delta}$ are measured to be 684 and 0.036 at 1 kHz in NKN-BCuN, respectively. The coercive field and remnant polarization are 14 kV/cm and $20{\mu}C/cm^2$.

Keywords

References

  1. C.-K. Park, D. K. Kang, S. H. Lee, Y.-M. Kong and D.-Y. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 541 (2017). https://doi.org/10.4313/JKEM.2017.30.9.541
  2. M.-H. Zhang, H. Ch. Thong, Y. X. Lu, W. Sun, J.-F. Li and K. Wang, J. Korean Ceram. Soc., 54, 261 (2017). https://doi.org/10.4191/kcers.2017.54.4.10
  3. J.-H. Park, H.-J. Park and B.-C. Choi, Korean J. Mater. Res., 26, 721 (2016). https://doi.org/10.3740/MRSK.2016.26.12.721
  4. J.-W. Kim, J.-H. Lim, S.-H. Kim, C. Y. Koo, J. Ryu and D.-Y. Jeong, J. Ceram. Process. Res., 19, 243 (2018). https://doi.org/10.36410/JCPR.2018.19.3.243
  5. D. Lee, H. Vu, H. Sun, T. L. Pham, D. T. Nguyen, J.-S. Lee and J. G. Fisher, Ceram. Int., 42, 18894 (2016). https://doi.org/10.1016/j.ceramint.2016.09.038
  6. E. Uwiragiye, M. U. Farooq, S.-H. Moon, T. L. Pham, D. T. Nguyen, J.-S. Lee and J. G. Fisher, J. Eur. Ceram. Soc., 37, 4597 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.015
  7. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, Ting Zheng, B. Zhang, X. Lou and X. Wang, J. Am. Chem. Soc., 136, 2905 (2014). https://doi.org/10.1021/ja500076h
  8. C.-W. Ahn, A. Rahman, J. Ryu, J.-J. Choi, J.-W. Kim, W.-H. Yoon and B.-D. Hahn, Cryst. Growth Des., 16, 6586 (2016). https://doi.org/10.1021/acs.cgd.6b01287
  9. C.-W. Ahn, C.-S. Park, C.-H. Choi, S. Nahm, M.-J. Yoo, H.-G. Lee and S. Priya, J. Am. Ceram. Soc., 92, 2033 (2009). https://doi.org/10.1111/j.1551-2916.2009.03167.x
  10. G. Han, J. Ryu, C.-W. Ahn, W.-H. Yoon, J.-J. Choi, B.-D. Hahn, J.-W. Kim, J. H. Choi and D.-S. Park, J. Am. Ceram. Soc., 95, 1489 (2012). https://doi.org/10.1111/j.1551-2916.2012.05139.x
  11. A. Rahman, K.-H. Cho, C.-W. Ahn, J. Ryu, J.-J. Choi, J.-W. Kim, W.-H. Yoon, J.-H. Choi, D.-S. Park and B.-D. Hahn, J. Eur. Ceram. Soc., 38, 1416 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.028
  12. C.-W. Ahn, H.-Y. Lee, G. Han, S. Zhang, S.-Y. Choi, J.-J. Choi, J.-W. Kim, W.-H. Yoon, J.-H. Choi, D.-S. Park, B.-D. Hahn and J. Ryu, Sci. Rep., 5, 17656 (2015). https://doi.org/10.1038/srep17656
  13. Y. Zhen and J.-F. Li, J. Am. Ceram. Soc., 90, 3496 (2007). https://doi.org/10.1111/j.1551-2916.2007.01977.x
  14. J.-H. Kim, I.-T. Seo, J. Hur, D.-H. Kim and S. Nahm, J. Korean Ceram. Soc., 53, 129 (2016). https://doi.org/10.4191/kcers.2016.53.2.129
  15. B. Zhu, Y. Zhu, J. Yang, J. O.-Yang, X. Yang, Y. Li and W. Wei, Sci. Rep., 6, 39679 (2016). https://doi.org/10.1038/srep39679
  16. J. Yang, F. Zhang, Q. Yang, Z. Liu, Y. Li, Y. Liu and Q. Zhang, Appl. Phys. Lett., 108, 182904 (2016). https://doi.org/10.1063/1.4948642
  17. N. Jiang, B. Fang, Q. Du and L. Zhou, Ferroelectrics, 413, 73 (2011). https://doi.org/10.1080/00150193.2011.542718
  18. K. Uchino, Ferroelectric Devices, 2nd ed., p.80, Taylor & Francis, Boca Raton, Florida, United States (2009).