DOI QR코드

DOI QR Code

Effect of Chemical Compositions on Microstructure and Mechanical Properties of Base Metal and HAZ of Bainitic Steel Plates

베이나이트계 후판강의 모재 및 열영향부의 미세조직과 기계적 특성에 미치는 화학 조성의 영향

  • Cho, Sung Kyu (Technical Research Center, Hyundai Steel Company) ;
  • Joo, Hyung Goun (Technical Research Center, Hyundai Steel Company) ;
  • Shin, Sang Yong (School of Materials Science and Engineering, University of Ulsan)
  • 조성규 (현대제철 기술연구소) ;
  • 주형건 (현대제철 기술연구소) ;
  • 신상용 (울산대학교 첨단소재공학부)
  • Received : 2019.02.12
  • Accepted : 2019.03.12
  • Published : 2019.04.27

Abstract

In this study, three kinds of bainitic steel plates are manufactured by varying the chemical compositions and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room and low temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone (HAZ) specimens are fabricated by a simulation of welding processes, and the HAZ microstructure is analyzed. The base steel that has the lowest carbon equivalent has the highest volume fraction of acicular ferrite and the lowest volume fraction of secondary phases, so the strength is the lowest and the elongation is the highest. The Mo steel has a higher volume fraction of granular bainite and more secondary phases than the base steel, so the strength is high and the elongation is low. The CrNi steel has the highest volume fraction of the secondary phases, so the strength is the highest and elongation is the lowest. The tensile properties of the steels, namely, strength and elongation, have a linear correlation with the volume fraction of secondary phases. The Mo steel has the lowest Charpy impact energy at $-80^{\circ}C$ because of coarse granular bainite. In the Base-HAZ and Mo-HAZ specimens, the hardness increases as the volume fraction of martensite-austenite constituents increases. In the CrNi-HAZ specimen, however, hardness increases as the volume fraction of martensite and bainitic ferrite increases.

Keywords

References

  1. D. S. Liu, Q. L. Li and T. Emi, Metall. Mater. Trans. A, 42, 1349 (2011). https://doi.org/10.1007/s11661-010-0458-1
  2. Y. L. Zhou, T. Jia, X. J. Zhang, Z. Y. Liu and R. D. K. Misra, Mater. Sci. Eng., A, 626, 352 (2015). https://doi.org/10.1016/j.msea.2014.12.074
  3. B. L. Bramfitt and J. G. Speer, Metall. Trans. A, 21, 817 (1990). https://doi.org/10.1007/BF02656565
  4. A. D. Schino and P. E. D. Nunzio, Mater. Lett., 186, 86 (2017). https://doi.org/10.1016/j.matlet.2016.09.092
  5. M. Hamada, Y. Fukada and Y. Komiz, ISIJ Int., 35, 1196 (1995). https://doi.org/10.2355/isijinternational.35.1196
  6. S. F. Medina, ISIJ Int., 39, 930 (1999). https://doi.org/10.2355/isijinternational.39.930
  7. M. Chapa, ISIJ Int., 42, 1288 (2002). https://doi.org/10.2355/isijinternational.42.1288
  8. A. D. Schino and C. Guarnaschelli, Mater. Lett., 63, 1968 (2009). https://doi.org/10.1016/j.matlet.2009.06.032
  9. A. D. Schino, L. Alleva and M. Guagnelli, Mater. Sci. Forum, 860, 715 (2012).
  10. C. Yu, T. C. Yang, C. Y. Huang and R. K. Shiue, Metall. Mater. Trans. A, 47A, 4777 (2016).
  11. S. K. Dhua, D. Mukerjee and D. S. Sarma, Metall. Mater. Trans. A, 32A, 2259 (2001).
  12. B. Hwang, C. G. Lee and S. J. Kim, Metall. Mater. Trans. A, 42A, 717 (2011).
  13. T. C. Yang, C. Y. Huang, T. C. Cheng, C. Yu and R. K. Shiue, Adv. Mater. Res., 936, 1312 (2014). https://doi.org/10.4028/www.scientific.net/AMR.936.1312
  14. G. Heigl, H. Lengauer and P. Hodnik, Steel Res. Int., 79, 931 (2008). https://doi.org/10.1002/srin.200806223
  15. B. C. Kim, S. Lee, N. J. Kim and D. Y. Lee, Metall. Trans. A, 22A, 139 (1991).
  16. N. Yurioka, Weld. World, 35, 375 (1995).
  17. R. E. Dolby, Weld. Res. Int., 7, 298 (1977).
  18. Y. U. Zhang, X. Li and H. Ma, Metall. Mater. Trans. B, 47, 2148 (2016). https://doi.org/10.1007/s11663-015-0534-4
  19. X. L. Wang, Y. T. Tsai, J. R. Yang, Z. Q. Wang, X. C. Li, C. J. Shang and R. D. K. Misra, Weld World, 61, 1155 (2017). https://doi.org/10.1007/s40194-017-0498-x
  20. M. Shome, O. P. Gupta, and O. N. Mohanty, Metall. Mater. Trans. A, 35A, 985 (2004).
  21. S.-C. Wang and P.-W. Kao, J. Mater. Sci., 28, 5169 (1993). https://doi.org/10.1007/BF00570058
  22. F. T. Han, B. C. Hwang, D. W. Suh, Z. C. Wang, D. L. Lee and S. J. Kim, Met. Mater. Int., 14, 667 (2008). https://doi.org/10.3365/met.mat.2008.12.667
  23. T. Araki, Atlas for Bainitic Microstructures, p. 1, ISIJ, Tokyo, Japan (1992).
  24. G. Krauss and S.W. Thompson, ISIJ Int., 35, 937 (1995). https://doi.org/10.2355/isijinternational.35.937
  25. H. K. D. H. Bhadeshia, Mater. Sci. Eng., A, A378, 34 (2004). https://doi.org/10.1016/j.msea.2003.10.328
  26. D. Deng and S. Kiyoshima, Comp. Mater. Sci., 62, 23 (2012). https://doi.org/10.1016/j.commatsci.2012.04.037
  27. H. Qiu, M. Enoki, Y. Kawaguchi and T. Kishi, ISIJ Int., 40, 34 (2000). https://doi.org/10.2355/isijinternational.40.Suppl_S34