DOI QR코드

DOI QR Code

Formation of Copper Electroplated Electrode Patterning Using Screen Printing for Silicon Solar Cell Transparent Electrode

실리콘 태양전지 투명전극용 스크린 프린팅을 이용한 구리 도금 전극 패터닝 형성

  • Kim, Gyeong Min (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Cho, Young Joon (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University)
  • 김경민 (충남대학교 에너지기술과학대학원) ;
  • 조영준 (충남대학교 에너지기술과학대학원) ;
  • 장효식 (충남대학교 에너지기술과학대학원)
  • Received : 2019.01.29
  • Accepted : 2019.03.26
  • Published : 2019.04.27

Abstract

Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of $Cu_2SO_4$ and $H_2SO_4$ at a current density of $10mA/cm^2$. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about $80{\mu}m$. The contact resistance of the copper electrode is $0.89m{\Omega}{\cdot}cm^2$, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are $1{\Omega}/{\square}$ and $40{\Omega}/{\square}$, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.

Keywords

References

  1. Y. K. Kim, T. E. Jeong, D. H. Oh and N. S. Kim, Trans. Korean Soc. Mech. Eng. A, 34, 1837 (2010). https://doi.org/10.3795/KSME-A.2010.34.12.1837
  2. M. Pospischil, K. Zengerle, J. Specht, G. Birkle, P. Koltay, R. Zengerle, A. Henning, M. Neidert, C. Mohr, F. Clement and D. Biro, Energy Procedia, 8, 449 (2011). https://doi.org/10.1016/j.egypro.2011.06.164
  3. C.-J. Lee and D.-Y. Shin, Trans. Korean Soc. Mech. Eng. B, 36, 1135 (2012). https://doi.org/10.3795/KSME-B.2012.36.11.1135
  4. D.-H. Kim, S.-S. Ryu, D. Shin, J.-H. Shin, J.-J. Jeong, H.-J. Kim and H. S. Chang, Mater. Sci. Eng., B, 177, 217 (2012). https://doi.org/10.1016/j.mseb.2011.12.027
  5. S. De Wolf, A. Descoeudres, Z. C. Holman and C. Ballif, Appl. Phys. Lett., 101, 171604 (2002). https://doi.org/10.1063/1.4764529
  6. C. Xu, J. Wang, M. Wang, H. Jin, Y. Hao and C. P. Wen, Solid-State Electron., 50, 843 (2006). https://doi.org/10.1016/j.sse.2006.03.007
  7. S. H. Lee, D. W. Lee, H. J. Kim, A. R. Lee, S. H. Lee, K. J. Lim and W. S. Shin, Mater. Sci. Semicond. Process., 87, 19 (2018). https://doi.org/10.1016/j.mssp.2018.07.002