액회천연가스 냉열을 이용한 단일팽창과 이단팽창 사이의 비교 연구

노상균

동양대학교 화공생명공학과

Comparative Study between Single-stage and Two-stage Expansion Using LNG Cold Heat

SANGGYUN NOH[†]

Department of Chemical & Biomolecular Engineering, Dongyang University, 145 Dongyangdae-ro, Punggi-eup, Yeongju 36040, Korea

Corresponding author: sgnoh@dyu.ac.kr

Received 20 March, 2019 Revised 17 April, 2019 Accepted 30 April, 2019

Abstract >> Comparative studies between single- and two-stage expansion process using LNG cold heat have been performed for a closed Rankine power generation cycle. PRO/II with PROVISION release 10.0 from Schneider Electric Company was used, and the Peng-Robinson equation of state model with Twu's alpha function was selected for the modeling and optimization of the power generation cycle using LNG cold heat. In two-stage power generation cycle, 6.7% more power was obtained compared to that of single-stage power generation cycle through the optimization works.

Key words: Cold heat(냉열), Liquefied natural gas(액화천연가스), Power generation cycle(동력생산 사이클), Computer simulation(전산 모사), Optimization (최적화)

1. 서 론

열로부터 동력을 생산하는 공정은 열역학의 오랜 관심사 중의 하나이다^{1,2)}. Fig. 1에는 작동유체로써 프로판을 사용하여 팽창기를 통해서 동력을 생산해 내는 폐쇄형 Rankine 사이클에 대한 전산모사를 수 행한 것을 PRO/II with PROVISION V10.0 (PRO/II) 을 이용한 플로우쉬트로 나타내었다³⁾. Fig. 1에 의하 면 스트림 1에서는 냉각수에 의해서 45°C에서 기포 점까지 냉각된 프로판을 P01 펌프를 이용하여 38.5 bar까지 가압한다. 작동유체인 액상의 프로판을 펌프 로 가압하는 과정에서 동력이 소모된다. 38.5 bar까 지 가압된 액체 상태의 프로판은 E01 증발기를 통해 서 증발된다. E01에서는 프로판의 증발을 위해서 에 너지가 사용된다. 고온, 고압의 프로판 작동유체는 EX01 팽창기를 통해서 감압되면서 동력을 생산한다. 감압된 작동유체는 냉각수를 이용해서 45℃까지 응 축된다. Table 1에는 시간당 프로판 100 kg의 작동유 체를 이용하여 동력을 생산해내는 공정에 대한 전산 모사 결과를 요약 정리하였다. 작동유체인 프로판의

응축을 위하여 냉매로 냉각수를 활용할 경우 발전효 율은 6.9%에 불과하다.

냉매로 냉각수 대신에 LNG를 이용하면 프로판의 어는점이 -187.68°C로 매우 낮기 때문에 LNG 냉열 을 이용해서 응축기 후단의 온도를 낮출 수 있다. 그 렇게 되면 프로판의 기포점 압력을 대폭적으로 낮출 수 있기 때문에 팽창기 전단과 후단의 압력 차가 증 가하게 되므로 발전효율을 높일 수 있다. 본 연구에 서는 한국가스공사에서 제공하는 LNG의 조성 중에

Fig. 1. Flow sheet diagram for a closed Rankine power generation cycle

Item	Value	Unit
Working fluid flow rate	100	kg/h
Stream 1 pressure	15.429	bar
Stream 1 temperature	45	°C
Stream 2 pressure	38.5	bar
Stream 3 temperature	91.0	°C
P01 power	0.1751	kW
P01 efficiency	80	%
E01 duty	8.0	kW
E02 duty	6,400	kcal/h
EX01 power	0.7297	kW
EX01 efficiency	80	%
Power generation efficiency	6.9	%

Table 1. Power generation cycle simulation results summary

서 typical case에 대해서 적용하였으며 Table 2에 LNG의 조성을 나타내었다. Table 1에서 발전효율, η 은 식 (1)과 같이 정의하였다.

$$\eta = \frac{EX01 Power - P01 Power}{E01 duty} \times 100(\%) \quad (1)$$

2. 열역학 이론

본 연구에서 사용하는 천연가스의 구성 성분들은 질소를 제외하면 모두 탄화수소 성분들이며, 작동유 체인 프로판도 탄화수소이다. 열역학 모델식에는 증 기상과 액상에 모두 상태방정식 모델식을 적용하는 one model approach가 있고, 증기상은 상태방정식을 액상에는 액체 활동도계수 모델식을 적용하는 two model approach가 있다⁴. 본 연구에서는 상태방정식 모델식인 Peng-Robinson 모델식을 적용하였는데, 그 이유는 탄화수소 혼합물의 상평형 계산에 적합한 모 델식이기 때문이다⁵.

식 (2)에는 Peng-Robinson 상태방정식의 functional form을 나타내었다.

$$P = \frac{RT}{v-b} - \frac{a\alpha}{v(v+b) - b(v-b)}$$
(2)

식 (2)에서 *a*와 *b*는 각각 에너지 매개변수와 크기 매개변수이다. 이는 임계온도와 임계압력의 함수로 다음의 식 (3) 및 식 (4)와 같이 유도된다.

$$a = 0.45724 \frac{R^2 T_c^2}{P_c}$$
(3)

Table	2.	LNG	compositions
-------	----	-----	--------------

Component	mol%
N ₂	0.04
CH ₄	89.26
C ₂ H ₆	8.64
C ₃ H ₈	1.44
I-C ₄ H ₁₀	0.27
N-C ₄ H ₁₀	0.35
M.W.	17.924

$$b = 0.07780 \frac{RT_c}{P_c} \tag{4}$$

또한 α 는 알파 함수로써 Kontogeorgis와 Folas⁶가 제안한 편심인자를 사용한 것을 개선하기 위해서 Twu 등⁷⁾이 제안한 식 (5)를 사용하였다.

$$\alpha = T_r^{C_3(C_2 - 1)} \exp\left[C_1\left(1 - T_r^{C_2 C_3}\right)\right]$$
 (5)

한편 Table 3에는 질소 및 탄화수소 성분들에 대 한 Peng-Robinson 상태방정식을 적용하기 위한 임계 온도, 임계압력 및 이심인자를 나타내었다. 그리고 Table 4에는 천연가스 구성 성분들에 대한 Twu의 alpha function의 계수들을 나타내었다.

3. 전산모사

작동유체로써 프로판을 사용하였는데, Fig. 1에서 LNG 냉열을 활용하여 스트림 1의 온도를 가급적 낮 게 운전하면 발전효율을 향상시켜 줄 수 있다. 즉 펌

 Table 3. Critical temperature, critical pressure and acentric factor

Composition	T_c	p_c	ω
N ₂	-146.95	34.00	0.0377215
CH ₄	-82.59	45.99	0.0115478
C ₂ H ₆	32.17	48.72	0.099493
C_3H_8	96.68	42.48	0.152291
$I\text{-}C_4H_{10}$	134.99	36.48	0.180771
N-C ₄ H ₁₀	151.97	37.96	0.200164

Composition	C_1	C_2

Table 4. Coefficients in alpha function

Composition	C_1	C_2	C_3
N ₂	0.576421	0.909345	0.676502
CH ₄	0.119488	0.904017	-
C ₂ H ₆	0.526261	-0.0178246	0.12642
C_3H_8	0.595095	0.0348924	0.095946
$I-C_4H_{10}$	0.648491	-0.11527	0.532363
N-C ₄ H ₁₀	0.67287	-0.0414722	0.219121
$\begin{array}{c} CH_4 \\ \hline C_2H_6 \\ \hline C_3H_8 \\ \hline I-C_4H_{10} \\ \hline N-C_4H_{10} \\ \hline \end{array}$	0.119488 0.526261 0.595095 0.648491 0.67287	0.904017 -0.0178246 0.0348924 -0.11527 -0.0414722	- 0.12642 0.095946 0.532363 0.219121

프 후단의 압력이 38.5 bar이므로 펌프 전단의 압력 이 낮아야 팽창기 전·후단 사이의 압력 차이를 증가 시켜주므로 발전효율 향상에 유리하다. Table 5에는 프로판의 melting point, critical pressure를 나타내었 다.

3.1 단일팽창에 의한 동력 생산 공정의 전산모사

프로판을 작동유체로 사용하고 LNG의 냉열을 적 용해서 폐쇄형 Rankine 사이클에 대한 단일팽창 동 력 생산 공정의 PRO/II 플로우쉬트는 Fig. 2에 나타 내었다. LNG의 냉열을 활용하여 작동유체 응축기, E02에서 작동유체와 LNG 사이의 온도 차는 3°C까 지 접근시켰으며 LNG의 작열을 활용하기 위해서 E02 후단에서 LNG의 액상 몰 분율은 0이 되도록 컨 트롤러 CN1을 활용하여 스트림 L1의 LNG의 주입유 량을 조절하였다. 그리고 펌프, P01 후단의 압력은 작동유체의 임계압력의 90%인 38.5 bar까지 가압하 였다. EX01의 도출압력은 LNG 냉열에 의해서 냉각 할 수 있는 최소온도에서의 기포점 압력과 같으며 그 압력은 0.702 bar이다. 증발기 E01 후단에서는 작 동유체를 포화증기 상태까지 가열하도록 하였다. 한 편 컨트롤러, CN1에서는 LNG가 E02 후단에서 포화

Table 5. Melting point and critical pressure of propane

Composition	Melting point (°C)	Critical pressure (bar)
Propane	-187.68	42.48

Fig. 2. PRO/II flow sheet diagram for a closed single-stage Rankine power generation cycle using LNG cold heat

증기 상태까지 증발하도록 유량을 조절하였다. Table 6 에는 프로판을 작동유체로 사용하고 LNG 냉열을 사 용한 단일팽창 Rankine 사이클에 대한 전산모사 결 과를 요약하여 정리하였다.

Table 6에 의하면 작동유체와 LNG 사이의 접근온 도를 3°C로 하였을 때, E02 후단에서 작동유체의 온 도를 -58.2°C까지 낮출 수 있었다. 이때 얻어지는 동 력생산 효율은 21.4%로써 LNG 냉열 대신에 물을 냉 각제로 사용하였을 경우 E02 후단에서 얻을 수 있는 작동유체의 온도는 45°C이다. 그리고 이때 얻어지는 동력생산 효율은 6.9%에 불과하다. 이는 팽창기 후 단의 압력이 15.4 bar로 매우 높아져서 팽창비가 크 게 떨어지기 때문이다.

3.2 이단팽창에 의한 동력 생산 공정의 전산모사

Fig. 3에는 작동유체로 프로판을 사용하고, 발전효 율을 높이기 위해서 LNG 냉열을 적용하고, 단일팽 창 대신에 이단팽창을 적용한 Rankine 사이클에 대 한 PRO/II 플로우 시트를 나타내었다.

Fig. 3에는 중간에 히터를 가지는 이단팽창에 의 한 동력 생산 공정에 대한 전산모사를 수행하였는데, 스트림 3과 스트림 6의 압력이 고정되어 있으므로 첫 번째 팽창기의 도출 압력에 따라서 얻어지는 총

Table 6.	. Single-stage	Rankine	cycle	results	summary
----------	----------------	---------	-------	---------	---------

Item	Value	Unit
Working fluid flow	100	kg/h
LNG flow	61.2	kg/h
Working fluid E02 outlet temperature	-58.2	°C
Expander outlet pressure	0.702	bar
LNG E02 outlet temperature	-61.2	°C
P01 outlet pressure	38.5	bar
E01 outlet temperature	91.0	°C
E01 duty	15.2	kW
E02 duty	10,300	kcal/h
P01 power	0.2175	kW
EX01 power	3.4707	kW
Power generation efficiency	21.4	%

Fig. 3. PRO/II flow sheet diagram for a closed two-stage Rankine power generation cycle using LNG cold heat

Fig. 4. Total power obtained from two expanders vs. expander outlet pressure

Table 7. Double-stage Rankine cycle results summary

Item	Value	Unit
Working fluid flow	100	kg/h
LNG flow	63.7	kg/h
Working fluid E02 outlet temperature	-58.2	°C
LNG E02 outlet temperature	-61.2	°C
P01 outlet pressure	38.5	bar
E01 outlet temperature	91.0	°C
E01 duty	15.2	kW
E02 duty	10,800	kcal/h
E03 duty	0.3	kW
P01 power	0.2176	kW
EX01 power	0.5481	kW
EX02 power	3.1547	kW
Total expander power	3.7028	kW
Power generation efficiency	23.9	%

동력이 달라진다. Fig. 4에는 첫 번째 팽창기의 도출 압력에 따라서 얻어지는 총 동력을 그래프로 나타내 었다. Fig. 4와 Table 7에 의하면 첫 번째 팽창기의 도출압력이 증가함에 따라서 얻어지는 총 동력이 점 차적으로 증가하다가 19 bar에서 총 동력이 3.7028 kW로 최대가 됨을 알 수 있다. 이는 Table 6의 단일 팽창에서 얻어지는 동력인 3.4707 kW보다 6.7% 더 많은 동력을 얻을 수 있다는 것을 말해준다.

Table 7에는 LNG 냉열을 활용한 이단팽창 Rankine 사이클에 대한 전산모사 결과를 요약 정리 하였다. 이 결과에 의하면 이단팽창의 경우 단일팽창 에 비해서 생산되는 동력은 6.7% 증가하였으며, 동 력생산 효율은 21.4%에서 23.9%로 2.5% point가 증 가하였음을 알 수 있다.

4. 결 론

본 연구에서는 작동유체로 프로판을 사용하여 동 력을 생산하는 단일과 이단 Rankine 사이클의 효율 향상을 위해서 냉매로 냉각수 대신에 LNG 냉열을 활용하는 경우의 동력생산 효율을 비교하여 다음과 같은 결론을 얻을 수 있었다.

첫째, 프로판 작동유체에 적용한 폐쇄형 Rankine 사이클을 이용하여 동력생산을 할 때, 냉각제로 냉각 수를 사용하여 작동유체 응축기 후단에서 냉각이 가 능한 온도는 45°C이고 이때 작동유체의 기포점 압력 은 15.4 bar로 매우 높아서 팽창기에서 팽창비가 낮 기 때문에 발전효율이 6.9%에 불과하다. 하지만 LNG 냉열을 활용할 경우에는 응축기 후단의 압력을 0.702 bar로 매우 낮출 수 있어서 팽창비가 대폭적으 로 증가하게 되어 발전효율을 크게 높일 수 있었다.

둘째, 단일팽창 동력생산 사이클의 경우에 작동유 체 100 kg/h에 대해서 LNG 61.2 kg/h가 소요되었으 며, 이때 얻어지는 동력은 3.4707 kW이며 동력생산 효율은 21.4%임을 알 수 있었다.

셋째, 이단팽창 동력생산 사이클의 경우에 작동유

체 100 kg/h에 대해서 LNG 63.7 kg/h가 소요되었으 며, 이때 얻어지는 동력은 3.7028 kW로 동력생산 효 율은 23.9%이고, 단일팽창 동력생산 사이클에 비해 서 동력생산은 6.7% 증가하였으며 효율은 2.5% point 증가함을 알 수 있었다.

넷째, 프로판을 작동유체로 사용하는 경우 증발기 후단의 온도가 단일팽창과 이단팽창의 경우 모두 다 91.0°C로 비교적 낮기 때문에 상대적으로 잠열이 가 장 큰 low pressure 스팀의 사용이 가능하다.

후 기

이 논문은 2018년도 동양대학교 학술연구비의 지 원으로 수행되었다.

References

- J. M. Smith, H. C. Van Ness, M. M. Abbott, and M. T. Swihart, "Introduction to Chemical Engineering Thermodynamics", 8th ed., McGraw-Hill Higher Education, USA, 2018, pp. 1-4.
- S. I. Sandler, "Chemical, Biochemical, and Engineering Thermodynamics", 4th ed., John Wiley & Sons, Inc., USA, 2006, pp. 4-5.
- J. H. Cho, "Energy Saving Through Process Improvement, CO₂ Capture and Unutilized Energy Utilization Technology", A-JIN, Korea, 2018, pp. 165-178.
- J. H. Cho, J. G. Park, S. T. Kim, "Simulation of Chemical Process Using Pro/ II with PROVISION", A-JIN, Korea, 2004, pp. 49-61.
- Y. D. Peng and D. B. Robinson, "A New Two-Constant Equation of State", Ind. and Eng. Chem. Fund. Vol. 15, No. 1, 1976, pp. 59-64, doi: https://doi.org/10.1021/i160057a011.
- G. M. Kontogeorgis and G. K. Folas, "Thermodynamic Models for Industrial Applications", John Wiley & Sons, Inc., USA, 2009, pp. 41-42, doi: https://doi.org/10.1002/ 9780470747537.
- C. H. Twu, D. Bluck, J. R. Cunningham, and J. E. Coon, "A Cubic Equation of State with a New Alpha Function and a New Mixing Rule", Fluid Phase Equilib., Vol. 69, 1991, pp. 33-50, doi: https://doi.org/10.1016/0378-3812(91)90024-2.