DOI QR코드

DOI QR Code

Research trend in Fabrication of Metastable-phase Iron Nitrides for Hard Magnetic Applications

준안정상 기반의 질화철계 영구자석소재 제조연구동향

  • Kim, Kyung Min (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Lee, Jung-Goo (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Kim, Kyung Tae (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Baek, Youn-Kyoung (Powder&Ceramics Division, Korea Institute of Materials Science)
  • 김경민 (한국기계연구원 부설 재료연구소 분말.세라믹연구본부) ;
  • 이정구 (한국기계연구원 부설 재료연구소 분말.세라믹연구본부) ;
  • 김경태 (한국기계연구원 부설 재료연구소 분말.세라믹연구본부) ;
  • 백연경 (한국기계연구원 부설 재료연구소 분말.세라믹연구본부)
  • Received : 2019.04.23
  • Accepted : 2019.04.24
  • Published : 2019.04.28

Abstract

Rare earth magnets are the strongest type of permanent magnets and are integral to the high tech industry, particularly in clean energies, such as electric vehicle motors and wind turbine generators. However, the cost of rare earth materials and the imbalance in supply and demand still remain big problems to solve for permanent magnet related industries. Thus, a magnet with abundant elements and moderate magnetic performance is required to replace rare-earth magnets. Recently, $a^{{\prime}{\prime}}-Fe_{16}N_2$ has attracted considerable attention as a promising candidate for next-generation non-rare-earth permanent magnets due to its gigantic magnetization (3.23 T). Also, metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ exhibits high tetragonality (c/a = 1.1) by interstitial introduction of N atoms, leading to a high magnetocrystalline anisotropy constant ($K_1=1.0MJ/m^3$). In addition, Fe has a large amount of reserves on the Earth compared to other magnetic materials, leading to low cost of raw materials and manufacturing for industrial production. In this paper, we review the synthetic methods of metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ with film, powder and bulk form and discuss the approaches to enhance magnetocrystalline anisotropy of $a^{{\prime}{\prime}}-Fe_{16}N_2$. Future research prospects are also offered with patent trends observed thus far.

Keywords

References

  1. O. Gutfleisch, M. A. Willard, E. Bruck, C. H. Chen, S. G. Sankar, and J. P. Liu: Adv. Mater., 23 (2011) 821. https://doi.org/10.1002/adma.201002180
  2. S. Sugimoto: J. Phys. D: Appl. Phys., 44 (2011) 064001. https://doi.org/10.1088/0022-3727/44/6/064001
  3. D. Brown, B. Ma, and Z. Chen: J. Magn. Magn. Mater., 248 (2002) 432. https://doi.org/10.1016/S0304-8853(02)00334-7
  4. Humphries: M. Rare earth elements: The global supply chain. CRS Report for Congress, R41347 (Congressional Research Service, Library of Congress, 2010).
  5. A. Mubarok, N. Bordeaux, E. Poirier, F. E. Pinkerton, J. Gattacceca, P. Rochette, R. Reisener, L. H. Lewis and J. I. Goldstein: Meteoritics Planet Sci., 76 (2013).
  6. W. Zhang, P. Kharel, V. Valloppilly, L. Yue and D. J. Sellmyer: Phys. Status Solidi B, 252 (2015) 1934. https://doi.org/10.1002/pssb.201552075
  7. W. Xie, E. Polikarpov, J. P. Choi, M. E. Bowden, K. Sun and J. Cui: J. Alloys Compd., 680 (2016) 1. https://doi.org/10.1016/j.jallcom.2016.04.097
  8. J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian and D. Sellmyer: Acta Mater., 158 (2018) 118. https://doi.org/10.1016/j.actamat.2018.07.049
  9. M. Takahashi, H. Shoji, H. Takahashi, H. Nashi, T. Wakiyama, M. Doi, and M. Matsui: J. Appl. Phys., 76 (1994) 6642. https://doi.org/10.1063/1.358431
  10. M. Takahashi and H. Shoji: J. Magn. Magn. Mat., 208 (2000) 145. https://doi.org/10.1016/S0304-8853(99)00536-3
  11. M. Widenmeyer, T. C. Hansen and R. Niewa: Z. Anorg. Allg. Chem., 639 (2013) 2851. https://doi.org/10.1002/zaac.201300379
  12. J. A. Osborn: Phys. Rev., 67 (1945) 351. https://doi.org/10.1103/PhysRev.67.351
  13. D. J. Sellmyer, M. Zheng and R. Skomski: J. Phys.: Condens. Matter, 13 (2001) R433. https://doi.org/10.1088/0953-8984/13/25/201
  14. K. Jack: Proc. Roy. Soc. London, A208 (1951) 216.
  15. M. Usikov and A. Khachaturyan: Fiz. Met. Metalloved., 30 (1970) 614.
  16. T. Kim and M. Takahashi: Appl. Phys. Lett. 20 (1972) 492. https://doi.org/10.1063/1.1654030
  17. M. Komuro, Y. Kozono, M. Hanazono, and Y. Sugita: J. Appl. Phys., 67 (1990) 5126. https://doi.org/10.1063/1.344689
  18. Y. Sugita, K. Mitsuoka, M. Komuro, H. Hoshiya, Y. Kozono, and M. Hanazono: J. Appl. Phys., 70 (1991) 5977. https://doi.org/10.1063/1.350067
  19. J. M. D. Coey, K. O'Donnell, Q. Qi, E. Touchais and K. H. Jack: J. Phys.: Condens. Matter, 6 (1994) L23. https://doi.org/10.1088/0953-8984/6/4/001
  20. J. M. D. Coey: J. Appl. Phys., 76 (1994) 6632. https://doi.org/10.1063/1.358156
  21. T. Weber, L. De Wit, F. W. Saris and P. Schaaf: Thin Solid Films, 279 (1996) 216. https://doi.org/10.1016/0040-6090(95)08176-3
  22. T. Hattori, N. Kamiya and Y. Kato: J. Magn. Soc. Jpn., 25 (2001) 927. https://doi.org/10.3379/jmsjmag.25.927
  23. Y. Sasaki, N. Usuki , K. Matsuo and M. Kishimoto: IEEE Trans. Magn., 41 (2005) 3241. https://doi.org/10.1109/TMAG.2005.855247
  24. E. Kita, K. Shibata, H. Yanagihara, Y. Sasaki and M. Kishimoto: J. Magn. Magn. Mater., 310 (2007) 2411. https://doi.org/10.1016/j.jmmm.2006.10.1009
  25. C. W. Kartikowati, A. Suhendi, R. Zulhijah, T. Ogi, T. Iwaki and K. Okuyama: Nanoscale, 8 (2016) 2648. https://doi.org/10.1039/C5NR07859H
  26. I. Dirba, C. A. Schwobel, L. V. B. Diop, M. Duerrschnabel, L. Molina-Luna, K. Hofmann, P. Komissinskiy, H.-J. Kleebe and O. Gutfleisch: Acta Materialia, 123 (2017) 214. https://doi.org/10.1016/j.actamat.2016.10.061
  27. S. G. Kim, K. W. Jeon, J. G. Lee, H. Kong, H. J. Jeen, S. H. Kwon, and Y. K. Baek: J. Mag., 22(4) (2017) 590. https://doi.org/10.4283/JMAG.2017.22.4.590
  28. Y. Jiang, V. Dabade, L. F. Allard, E. L. Curzio, R. James and J. P. Wang: Phys. Rev. Appl., 6 (2016) 024013. https://doi.org/10.1103/PhysRevApplied.6.024013
  29. T. Ogawa, Y. Ogata, R. Gallage, N. Kobayashi, N. Hayashi, Y. Kusano, S. Yamamoto, K. Kohara, M. Doi and M. Takano: Appl. Phys. Express, 6 (2013) 073007. https://doi.org/10.7567/APEX.6.073007
  30. T. Ogi, A. B. D. Nandiyanto, Y. Kisakibaru, T. Iwaki, K. Nakamura and K. Okuyama: J. Appl. Phys., 113 (2013) 164301. https://doi.org/10.1063/1.4798959
  31. R. Zulhijah, K. Yoshimi, A. B. D. Nandiyanto, T. Ogi, T. Iwaki, K. Nakamura and K. Okuyama: Adv. Powder. Technol., 25 (2014) 582. https://doi.org/10.1016/j.apt.2013.09.006
  32. R. Zulhijah, A. B. D. Nandiyanto, T. Ogi, T. Iwaki, K. Nakamura and K. Okuyama: Nanoscale, 6 (2014) 6487. https://doi.org/10.1039/c3nr06867f
  33. R. Zulhijah, A. B. D. Nandiyanto, T. Ogi, T. Iwaki, K. Nakamura and K. Okuyama: J. Magn. Magn. Mater., 381 (2015) 89. https://doi.org/10.1016/j.jmmm.2014.12.015
  34. T. Ogi, Q. Li, S. Horie, A. Tameka, T. Iwaki and K. Okuyama: Adv. Powder. Technol., 27 (2016) 2520. https://doi.org/10.1016/j.apt.2016.09.017
  35. R. Zulhijah, A. Suhendi, K. Yoshimi, C. W. Kartikowati, T. Ogi, T. Iwaki and K.Okuyama: Langmuir, 31 (2015) 6011. https://doi.org/10.1021/acs.langmuir.5b00901
  36. I. Dirba, C. A. Schwobel, L. V. B. Diop, M. Duerrschnabel, L. M. Luna, K. Hofmann, P. Komissinskiy, H. -J. Kleene and O. Gutfleisch: Acta Mater., 123 (2017) 214. https://doi.org/10.1016/j.actamat.2016.10.061
  37. A. J. Newell and R. T. Merrill: J. Geophys. Res.: Solid Earth, 104 (1999) 617. https://doi.org/10.1029/1998JB900039
  38. H. Xu, Q. Wu, M. Yue, C. Li, H. Li and S. Palaka: AIP Advances, 8 (2018) 056422. https://doi.org/10.1063/1.5006555
  39. Y. K. Baek, Y. T. Seo, J. G. Lee, D. S. Kim, D. S. Bae and C. J. Choi: J. Korean Powder Metall. Inst., 20 (2013) 359. https://doi.org/10.4150/KPMI.2013.20.5.359
  40. Y. Jiang, J. Liu, P. K. Suri, G. Kennedy, N. N. Thadhani, D. J. Flannigan and J. P. Wang: Adv. Eng. Mater., 18 (2016) 1009. https://doi.org/10.1002/adem.201500455
  41. Y. Jiang, V. Dabade, L. F. Allard, E. Lara-Curzio, R. James and J. P. Wang: Phys. Rev. Appl., 6 (2016) 024013. https://doi.org/10.1103/PhysRevApplied.6.024013
  42. Y. Jiang, M. A. Mehedi, E. Fu, Y. Wang, L. F. Allard and J. P. Wang: Sci. Rep., 6 (2016) 25436. https://doi.org/10.1038/srep25436
  43. K. M. Kim and H. W. Kwon, J. G. Lee and J. H. Yu: J. Korean Mag. Soc., 27 (2017) 129. https://doi.org/10.4283/JKMS.2017.27.4.129
  44. A. Iga: Jpn. J. Appl. Phys., 9 (1970) 415. https://doi.org/10.1143/JJAP.9.415
  45. W. Coene, F. Hakkens, R. Coehoorn, D. B. De Mooij, C. De Waard, J. Fidler, and R. Grossinger: J. Magn. Magn. Mater., 96 (1991) 189. https://doi.org/10.1016/0304-8853(91)90627-M
  46. M. D. Kuzmin, K. P. Skokov, H. Jian, I. Radulov and O. Gutfleisch: J. Phys.: Condens. Matter, 26 (2014) 064205. https://doi.org/10.1088/0953-8984/26/6/064205
  47. A. Edstrom M. Werwinski, D. Iusan, J. Rusz, O. Eriksson, K. P. Skokov, I. A. Radulov, S. Ener, M. D. Kuz'min, J. Hong, M. Fries, D. Y. Karpenkov, O. Gutfleisch, P. Toson, and J. Fidler: Phys. Rev. B, 92 (2015) 174413. https://doi.org/10.1103/PhysRevB.92.174413
  48. K. M. Kim, H. W. Kwon, J. G. Lee and J. H. Yu: IEEE Trans. Magn., 54 (2018) 2101805.
  49. X. Zhao, C. Z. Wang, Y. Yao, and K. M. Ho: Phys. Rev. B, 94 (2016) 224424. https://doi.org/10.1103/PhysRevB.94.224424
  50. M. Tobise, S. Saito, and M. Doi: AIP Advances, 9 (2019) 035233. https://doi.org/10.1063/1.5079990
  51. D. L. Leslie-Pelecky and R. D. Rieke: Chem. Mater., 8 (1996) 1770. https://doi.org/10.1021/cm960077f
  52. T. Holstein and H. Primakoff: Phys. Rev., 58 (1940) 1098. https://doi.org/10.1103/PhysRev.58.1098
  53. M. Pardavi-Horvath, J. Yan and J. R. Peverley: IEEE Trans. Magn., 37 (2001) 3881. https://doi.org/10.1109/20.966122
  54. M. Kobayashi and Y. Ishikawa: IEEE Trans. Magn., 28 (1992) 1810. https://doi.org/10.1109/20.141290