Fig. 1. Experimental setup for measurements of velocity of ionic wind
Fig. 2. Schematic of mockup with located electrodes
Fig. 3. Mesh electrodes with various hole diameters
Fig. 4. Measurement method for reduction of intensity by time; a) Before use of MTC and b) After use of MTC
Fig. 5. Procedure of image processing for drying efficiency; a) Photographed images during experiment, b) Histogram analysis for binarization and c) Counting pixels in binarized images
Fig. 6. Comparison between measured velocity and empirical model according to electric potential for a) 6kV, b) 7kV, c) 8kV, d) 9kV and e) 10kV
Fig. 7. Comparison between measured velocity and empirical model according to hole diameter for a) 6mm, b) 10mm and c) 16mm
Fig. 8. Schematic of electric field and magnitude of velocity of ionic wind for a) D = 6mm and b) D = 16mm
Fig. 9. Reduction of acetone mass by time with and without ionic wind for various contact diameters
Fig. 10. Electric efficiency for different contact area with ionic wind and fan
Fig. 11. Reduction of normalized reflected intensity according to time with and without ionic wind
Table 1. Maximum velocity of ionic wind and empirical constant for various hole diameters of mesh
References
- Fridman, A. Chirokov, A. and Gutsol, A., 2005, "Non-Thermal Atmospheric Pressure Discharges," J. Phys. D: Appl. Phys., Vol. 38, pp.1-24. https://doi.org/10.1088/0022-3727/38/1/001
- Robinson, M., 1961, "A History of the Electric Wind," Am. J. Phys., Vol. 28, pp.366-371. https://doi.org/10.1119/1.1935805
- Johnson, M. J. and Go, D. B., 2017, "Recent Advances in Electrohydrodynamic Pumps," Plasma. Sources. Sci. T. Vol. 26, pp.1-27.
- Zhao, L. and Adamiak. K., 2016, "EHD Flow Produced by Electric Corona Discharge in Gases from Fundamental Studies to Applications : a Review," Particul. Sci. Technol Vol. 34, pp.63-71. https://doi.org/10.1080/02726351.2015.1043677
- Muller, S. and Zahn, R. -J., 2007, "Air-Pollution Control by Non-Thermal Plasma," Contrib. Plasma. Phys. Vol. 47, pp.520-529. https://doi.org/10.1002/ctpp.200710067
- Moreau, E., 2007, "Airflow Control by Non-Thermal Plasma Actuators," J. Phys. D: Appl. Phys Vol. 40, pp.605-636. https://doi.org/10.1088/0022-3727/40/3/S01
- Chun, Y. N., 2006, "Numerical Modeling of Wire Electrohydrodynamic flow in a Wire-Plate ESP," Environ. Eng. Res. Vol.11, pp.164-171. https://doi.org/10.4491/eer.2006.11.3.164
- Johnson, M. J., Tirumala, R. and Go, D. B., 2015, "Analysis of Geometric Scaling of Miniature, Multi-Electrode Assisted Corona Discharges for Ionic Wind Generation," J. Electrostat. Vol. 74, pp.8-14. https://doi.org/10.1016/j.elstat.2014.12.001
- Li, L., Lee, S. J., Kim, W. and Kim, D., 2015, "An Empirical Model for Ionic Wind Generation by a Needle-to-Cylinder DC Corona Discharge," J. Electrostat. Vol. 73, pp.125-130. https://doi.org/10.1016/j.elstat.2014.11.001
- Meng, X., Zhang, H. and Zhu, J., 2008, "A General Empirical Formula of Current-Voltage Characteristics for Point-to-Plane Geometry Corona Discharges," J. Phys. D: Appl. Phys. Vol. 41, pp.1-10. https://doi.org/10.1051/epjap:2007176
- Moon, J. D., Hwang, D. H. and Geum, S. T., 2009, "An EHD Gas Pump Utilizing a Ring-Needle Electrode," IEEE. T. Dielect. El. In. Vol. 16(2), pp.352-358. https://doi.org/10.1109/TDEI.2009.4815163
- Shaughnessy, E. J. and Solomon, G. S., 2007, "Electrohydrodynamic Pressure of the Point-toPlane Corona Discharge," Aerosol. Sci. Tech. Vol. 14, pp.193-200. https://doi.org/10.1080/02786829108959482
- Tsui, Y. Y., Huang, Y. X., Lan, C. C. and Wang, C. C., 2017, "A Study of Heat Transfer Enhancement via Corona Discharge by Using a Plate Corona Electrode," J. Electrostat. Vol. 87, pp.1-10. https://doi.org/10.1016/j.elstat.2017.02.003
- Zhang, Y., Liu, L. L., Chen, Y. and Ouyang, J., 2015, "Characteristics of Ionic Wind in Needle to Ring Corona Discharge," J. Electrostat. Vol. 74, pp.15-20. https://doi.org/10.1016/j.elstat.2014.12.008
- Artana, G., D'Adamo, J., Leger, L., Moreau, E. and Touchard, G. G., 2002, "Flow Control with Electrohydrodynamic Actuators," AIAA. J. Vol. 40, pp. 1773-1779. https://doi.org/10.2514/2.1882
- Leger, L., Moreau, E. and Touchard, G. G., 2002, "Effect of a DC Corona Electrical Discharge on the Airflow along a Flat Plate," IEEE. T. Ind. Appl. Vol. 38, pp.1478-1485. https://doi.org/10.1109/TIA.2002.804769
- Liang, W. J. and Lin, T. H., 1994, "The Characteristics of Ionic Wind and Its Effect on Electrostatic Precipitators," Aerosol. Sci. Tech. Vol. 20, pp.330-344. https://doi.org/10.1080/02786829408959689
- Yamamoto, T. and Velkoff, H. R., 1981, "Electrohydrodynamics on an Electrostatic Precipitator," J. Fluid. Mech. Vol. 108, pp.1-18. https://doi.org/10.1017/S002211208100195X
- Kim, B., Lee, S., Lee, Y. S. and Kang, K. H., 2012, "Ion Wind Generation and the Application to cooling," J. Electrostat. Vol. 70, pp.438-444. https://doi.org/10.1016/j.elstat.2012.06.002
- Wang, T. H., Peng, M., Wang, X. D. and Yan, W. M., 2017, "Investigation of Heat Transfer Enhancement by Electrohydrodynamics in a Double-Wall-Heated Channel," Int. J. Heat. Mass. Tran. Vol. 113, pp.373-383. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.079
- Scholtz, V., Pazlarova, J., Souskova, H., Khun, J. and Julak, J., 2015, "Nonthermal plasma-A tool for decontamination and disinfection," Biotechnol Adv Vol. 33, pp.1108-1119. https://doi.org/10.1016/j.biotechadv.2015.01.002
- Lai, F. C. and Lai, K. -W., 2002, "EHD-Enhanced Drying With Wire Electrode," Dry. Technol. Vol. 20, pp.1393-1405. https://doi.org/10.1081/DRT-120005858
- Wonly, A., 1992, "Intensification of the Evaporation Process by Electric Field," Chem. Eng. Sci. Vol. 47, pp.551-554. https://doi.org/10.1016/0009-2509(92)80005-W
- Moreau, E. and Touchard, G. G., 2008, "Enhancing the Mechanical Efficiency of Electric Wind in Corona Discharges," J. Electrostat. Vol. 66, pp.39-44. https://doi.org/10.1016/j.elstat.2007.08.006
- Yamada, K., 2004, "An Empirical Formula for Negative Corona Discahrge Current in Point-Grid Electrode Geometry," J. appl. phys. Vol. 96, pp.2472-2475. https://doi.org/10.1063/1.1775301
- Chang, J. S., 2001, "Recent Development of Plasma Pollution Control Technology : a Critical Review," Sci. Technol. Adv. Mat. Vol. 2, pp.571-576. https://doi.org/10.1016/S1468-6996(01)00139-5
- Chang, J. S., 2003, "Next Generation Integrated Electrostatic Gas Cleaning Systems," J. Electrostat. Vol. 57, pp.273-291. https://doi.org/10.1016/S0304-3886(02)00167-5
- McAdams, R., 2001, "Prospects for Non-Thermal Atmospheric Plasmas for Pollution Abatement," J. Phys. D: Appl. Phys. Vol. 34, pp.2810-2821. https://doi.org/10.1088/0022-3727/34/18/315
- Mizuno, A., 2007, "Industrial Application of Atmospheric Non-Thermal Plasma in Environmental Remediation," Plasma Phys. Control. Fusion. Vol. 49, pp.A1-A15. https://doi.org/10.1088/0741-3335/49/5A/S01
- Shiavon, M., Torretta, V., Casazza, A. and Ragazzi, M., 2017, "Non-Thermal Plasma as an Innovative Option for the Abatement of Volatile Organic Compounds : a Review," Water. Air. Soil. Poll. Vol. ), pp.228-388.
- Tham, K. W., 2016, "Indoor Air Quality and Its Effects on Humans - A Review of Challenges and Developments in the last 30 Years," Energ. Buildings. Vol. 130, pp.637-650. https://doi.org/10.1016/j.enbuild.2016.08.071