Fig. 1. Hybrid characteristic and physical mechanism of REP. (a) Change of particle cluster observed when switching on and off a uniform AC electric field and a focused laser alternatively. (b) Interrelation of electrostatic, electrohydrodynamic and electrothermal forces involved in REP.
Fig. 2. Experimental setup for REP manipulation. (a) Schematic of REP experimental system. (b) Structure of a microfluidic chip to create REP manipulation environment.
Fig. 3. Various manipulations of 1μm-diameter polystyrene particles by REP. (a) Particle aggregation. (b) Particle translation. (c) Dynamic collection of particles. (d) Particle trapping in a continuous fluid flow. For the manipulations shown in (a)-(c), AC electric signal of 26.1kHz and 4.0Vpp and laser power of 20mW were provided to the microfluidic chip. The manipulation in (d) was achieved by 20.1kHz AC frequency, 5.4Vpp electric potential, and 20mW laser power. All the scale bars represent 10μm length.
Fig. 4. Manipulation of other kinds and types of colloidal particles by REP. (a) 1μm-diameter spherical latex particles. The AC electric signal and laser power applied for the manipulation are 15kHz, 7.1Vpp, and 20mW respectively. (b) 1μm-diameter spherical glass particles. The AC electric signal and laser power applied for the manipulation are 27.5kHz, 8.2Vpp, and 20mW respectively. (c) 1μm-diameter spherical magnetic particles. The AC electric signal and laser power applied for the manipulation are 28.8kHz, 6.1Vpp, and 20mW respectively. (d) Ellipsoidal glass particles. The ratio of major and minor axis of the particles is 1.2:1, and the length of the minor axis is 1μm. The AC electric signal and laser power applied for the manipulation are 11.9kHz, 6.8Vpp, and 20mW respectively. All the scale bars represent 10μm length.
Fig. 5. Demonstration of bio-compatibility of REP technique. (a) Aggregation of S. cerevisiae at arbitrary location on an electrode surface. (b) Dynamic trapping of S. cerevisiae along with movement of a focused laser. For the aggregation and dynamic trapping, AC electric signal of 8.87kHz and 6Vpp and laser power of 30mW were provided to the chip. The scale bars all represent 20μm length.
References
- Belder, D., 2005." Microfluidics with Droplets." Angew. Chem. Int. Ed.Vol. 44,pp. 3521-3522. https://doi.org/10.1002/anie.200500620
- Bhagat, A.A.S., Bow, H., Hou, H.W., Tan, S.J., Han, J. and Lim, C.T., 2010." Microfluidics for cell separation." Medical and Biological Engineering and Computing.Vol. 48,pp. 999-1014. https://doi.org/10.1007/s11517-010-0611-4
- Gravesen, P., Branebjerg, J. and Jensen, O.S., 1993." Microfluidics-a review." Journal of Micromechanics and Microengineering.Vol. 3,pp. 168-182. https://doi.org/10.1088/0960-1317/3/4/002
- Yi, C., Li, C.-W., Ji, S. and Yang, M., 2006." Microfluidics technology for manipulation and analysis of biological cells." Anal. Chim. Acta.Vol. 560,pp. 1-23. https://doi.org/10.1016/j.aca.2005.12.037
- Gossett, D.R., Tse, H.T.K., Lee, S.A., Ying, Y., Lindgren, A.G., Yang, O.O., Rao, J., Clark, A.T. and Carlo, D.D., 2012." Hydrodynamic stretching of single cells for large population mechanical phenotyping." Proceedings of the National Academy of Sciences.Vol. 109,pp. 7630-7635. https://doi.org/10.1073/pnas.1200107109
- Justin, G., Nasir, M. and Ligler, F.S., 2011." Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device." Analytical and Bioanalytical Chemistry.Vol. 400,pp. 1347-1358. https://doi.org/10.1007/s00216-011-4872-z
- Tanyeri, M., Ranka, M. and Sittipolkul, N., 2011." A microfluidic-based hydrodynamic trap: design and implementation." Lab Chip.Vol. 11,pp. 1786-1794. https://doi.org/10.1039/c0lc00709a
- Yamada, M. and Seki, M., 2005." Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics." Lab on a Chip.Vol. 5,pp. 1233-1239. https://doi.org/10.1039/b509386d
- Furlani, E.P., 2007." Magnetophoretic separation of blood cells at the microscale." J. Phys. D: Appl. Phys.Vol. 40,pp. 1313-1319. https://doi.org/10.1088/0022-3727/40/5/001
- Pshenichnikov, A.F. and Ivanov, A.S., 2012." Magnetophoresis of particles and aggregates in concentrated magnetic fluids." Physical Review E.Vol. 86,pp. 05140101-05140111.
- Watarai, H., Suwa, M. and Iiguni, Y., 2004." Magnetophoresis and electromagnetophoresis of microparticles in liquids." Analytical and Bioanalytical Chemistry.Vol. 378,pp. 1693-1699. https://doi.org/10.1007/s00216-003-2354-7
- Deyl, Z., 1982. Electrophoresis. A Survey of Techniques and Applications, Elsevier Science Ltd., New York.
- Gas, B., 2009." Theory of electrophoresis: Fate of one equation." Electrophoresis.Vol. 30,pp. S7-S15. https://doi.org/10.1002/elps.200900133
- Kohlheyer, D., Eijkel, J.C.T., Berg, A.v.d. and Schasfoort, R.B.M., 2008." Miniaturizing free-flow electrophoresis - a critical review." Electrophoresis. Vol. 29,pp. 977-993. https://doi.org/10.1002/elps.200700725
- Doh, I. and Cho, Y.-H., 2005." A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process." Sensors and Actuators A.Vol. 121,pp. 59-65. https://doi.org/10.1016/j.sna.2005.01.030
- Gascoyne, P.R.C. and Vykoukal, J., 2002." Particle separation by dielectrophoresis." Electrophoresis.Vol. 23,pp. 1973-1983. https://doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
- Hu, X., Bessette, P.H., Qian, J., Meinhart, C.D., Daugherty, P.S. and Soh, H.T., 2005." Marker-specific sorting of rare cells using dielectrophoresis." Proceedings of the National Academy of Sciences of the United States of America.Vol. 102,pp. 15757-15761. https://doi.org/10.1073/pnas.0507719102
- Pethig, R., 2007. Cell Physiometry Tools based on Dielectrophoresis, BioMEMS and Biomedical Nanotechnology. pp. 103-126.
- Zhang, C., Khoshmanesh, K., Mitchell, A. and Kalantar-zadeh, K., 2010." Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems." Analytical and Bioanalytical Chemistry. Vol. 396,pp. 401-420. https://doi.org/10.1007/s00216-009-2922-6
- Arai, F., Ng, C., Maruyama, H., Ichikawa, A., El-Shimy, H. and Fukuda, T., 2005." On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel." Lab Chip.Vol. 5,pp. 1399-1403. https://doi.org/10.1039/b502546j
- Block, S.M., Blair, D.F. and Berg, H.C., 1989." Compliance of bacterial flagella measured with optical tweezers." Nature.Vol. 338,pp. 514-518. https://doi.org/10.1038/338514a0
- Moffitt, J.R., Chemla, Y.R., Smith, S.B. and Bustamante, C., 2008." Recent Advances in Optical Tweezers." Annu. Rev. Biochem.Vol. 77,pp. 205-228. https://doi.org/10.1146/annurev.biochem.77.043007.090225
- Williams, S.J., Kumar, A. and Wereley, S.T., 2008." Electrokinetic patterning of colloidal particles with optical landscapes." Lab Chip.Vol. 8,pp. 1879-1882. https://doi.org/10.1039/b810787d
- Chiou, P.Y., Ohta, A.T. and Wu, M.C., 2005." Massively parallel manipulation of single cells and microparticles using optical images." Nature.Vol. 436,pp. 370-372. https://doi.org/10.1038/nature03831
- Kwon, J.-S. and Wereley, S.T., 2013." Towards New Methodologies for Manipulation of Colloidal Particles in a Miniaturized Fluidic Device: Optoelectrokinetic Manipulation Technique." J. Fluids Eng.Vol. 135,pp. 0213061-0213010.
- Kumar, A., Kwon, J.-S., Williams, S.J., Green, N.G., Yip, N.K. and Wereley, S.T., 2010." Optically modulated electrokinetic manipulation and concentration of colloidal particles near an electrode surface." Langmuir.Vol. 26,pp. 5262-5272. https://doi.org/10.1021/la904661y
- Kumar, A., Williams, S.J., Chuang, H.-S., Green, N.G. and Wereley, S.T., 2011." Hybrid opto-electric manipulation in microfluidicsopportunities and challenges." Lab Chip.Vol. 11,pp. 2135-2148. https://doi.org/10.1039/c1lc20208a
- Mishra, A., Khor, J.-W., Clayton, K.N., Williams, S.J., Pan, X., Kinzer-Ursem, T. and Wereley, S., 2016." Optoelectric patterning: Effect of electrode material and thickness on laser-induced AC electrothermal flow." Electrophoresis.Vol. 37,pp. 658-665. https://doi.org/10.1002/elps.201500473
- Williams, S.J., Kumar, A., Green, N.G. and Wereley, S.T., 2009." A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles." Nanoscale.Vol. 1,pp. 133-137. https://doi.org/10.1039/b9nr00033j
- Kwon, J.-S., Thakur, R. and Wereley, S.T., 2012. Rapid Electrokinetic Patterning, in: Bhushan, B. (Ed.), Encyclopedia of nanotechnology. Springer, Dordrecht ; New York.
- Kwon, J.-S., Ravindranath, S.P., Kumar, A., Irudayaraj, J. and Wereley, S.T., 2012." Opto-electrokinetic manipulation for high-performance on-chip bioassays." Lab Chip.Vol. 12,pp. 4955-4959. https://doi.org/10.1039/c2lc40662d
- Mishra, A., Maltais, T.R., Walter, T.M., Wei, A., Williams, S.J. and Wereley, S.T., 2016." Trapping and viability of swimming bacteria in an optoelectric trap." Lab Chip.Vol. 16,pp. 1039-1046. https://doi.org/10.1039/C5LC01559F
-
Kim, M.-J., Nam, S.-W., Tamano, K., Machida, M., Kim, S.-K. and Kim, Y.-H., 2011." Optimization for Production of Exo-
$\beta$ -1,3-glucanase (Laminarinase) from Aspergillus oryzae in Saccharomyces cerevisiae." Korean Society for Biotechnology and Bioengineering. Vol. 26,pp. 427-432. - Ristenpart, W.D., Aksay, I.A. and Saville, D.A., 2004." Assembly of colloidal aggregates by electrohydrodynamic flow: Kinetic experiments and scaling analysis." Physical Review E.Vol. 69,pp. 214051-214058.
- Morgan, H. and Green, N.G., 2002. AC electrokinetics: colloids and nanoparticles, Research Studies Press LTD., Baldock.
- Gil, G.-C., Chang, I.-S., Kim, B.H., Kim, M., Jang, J.-K., SooPark, H. and Kim, H.J., 2003." Operational parameters affecting the performannce of a mediator-less microbial fuel cell." Biosens. Bioelectron.Vol. 18,pp. 327-334. https://doi.org/10.1016/S0956-5663(02)00110-0
- Rijken, D.C. and Collen, D., 1981." Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture." The Journal of Biological Chemistry.Vol. 256,pp. 7035-7041. https://doi.org/10.1016/S0021-9258(19)69095-2
- Frizzell, R.A., Rechkemmer, G. and Shoemaker, R.L., 1986." Altered regulation of airway epithelial cell chloride channels in cystic fibrosis." Science.Vol. 233,pp. 558-560. https://doi.org/10.1126/science.2425436
- Morris, G.J., Winters, L., Coulson, G.E. and Clarke, K.J., 1983." Effect of Osmotic Stress on the Ultrastructure and Viability of the Yeast Saccharomyces cerevisiae." J. Gen. Microbiol. Vol. 129,pp. 2023-2034.