DOI QR코드

DOI QR Code

강릉원주대학교 복사-위성연구소에서 실외 비교관측을 통한 전천일사계 교정

Calibration of Pyranometer with Solar Radiation Intercomparison Observation at Research Institute for Radiation-Satellite, Gangneung-Wonju National University

  • 지준범 (한국외국어대학교 대기환경연구센터) ;
  • 조일성 (강릉원주대학교 복사-위성연구소) ;
  • 김부요 (강릉원주대학교 복사-위성연구소) ;
  • 이규태 (강릉원주대학교 복사-위성연구소) ;
  • 유명선 (기상청 관측기반국 계측기술과) ;
  • 이용주 (기상산업기술원 기상지원본분 측기검정팀) ;
  • 장정필 (강릉원주대학교 대기환경과학과)
  • Jee, Joon-Bum (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • Zo, Il-Sung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Kim, Bu-Yo (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Lee, Kyu-Tae (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Yoo, Myeong-Seon (Measurement Technology Division, Observation Infrastructure Bureau Observation Policy Division, Korea Meteorological Administrartion) ;
  • Lee, Yong-Joo (Meteorological Equipment Verification Team, Meteorological Infrastructure Department, Korea Meteorological Institute) ;
  • Jang, Jeong-Pil (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University)
  • 투고 : 2019.01.30
  • 심사 : 2019.04.24
  • 발행 : 2019.04.30

초록

전세계적으로 일사계 비교관측 기술은 급격히 발전하고 있지만 국내의 경우 일사 비교관측 표준지침을 준비하고 있는 실정이다. 본 연구에서는 국내 기상 및 지리적 환경을 고려하여 전천일사계의 비교관측 절차를 정립하였다. 2017년 아시아 지역 복사센터에서는 국가표준 일사계들의 비교관측을 통해 일사계 보정이 이루어졌다. 이때 검교정된 기상청 기준기를 이용하여 기상청의 부기준기들과 강릉원주대의 전천일사계의 비교관측 및 검교정이 수행되었다. 비교관측 및 검교정은 2018년 10월 24일부터 10월 25일(2일)까지 수행되었으며 비교관측자료를 분석하여 오차분석 및 검교정을 수행하였다. 보정전 비교관측에 따르면, 전천일사계 부기준기들(B-J)은 기상청 전천일사계 기준기(A)를 기준으로 ${\pm}12.0W\;m^{-2}$2 이하의 편차가 나타났고 B와 I 전천일사계는 ${\pm}4.0W\;m^{-2}$ 미만의 작은 편차를 보였다. 태양 복사량이 $450W\;m^{-2}$ 이상인 자료들을 이용하여 감도정수의 보정값을 계산하였다. B와 I 일사계(오차 ${\pm}0.5W\;m^{-2}$ 이하)를 제외한 일사계들(오차 ${\pm}5W\;m^{-2}$ 이상)은 $0.08-0.16{\mu}V(W\;m^{-2})^{-1}$ 감도정수 변경이 적용되었다. C 일사계는 감도정수의 변화가 가장 컸으며 감도정수는 $-0.16{\mu}V(W\;m^{-2})^{-1}$으로 보정하였다. 비교관측에 참가한 9종의 기준기 및 부기준기들의 최종 관측오차는 $0.06W\;m^{-2}$ (0.08%) 이하였으며 허용범위인 ${\pm}1.00%$ (${\pm}4.50W\;m^{-2}$)로 검교정되었다.

Although the technology for the observation of solar radiation is rapidly developing worldwide, in Korea the guidelines for comparing observations of solar radiation are only now under preparation. In this study, a procedure for intercomparison observations of solar radiation was established which accounts for meteorological and geographical conditions. The intercomparisons among observations by national reference pyranometers were carried out at the Asia Regional Radiation Center, Japan, in 2017. Recently, the result of the calibration of the reference pyranometer of the Korean Meteorological Administration (KMA) has been reported. Using the KMA pyranometer as a reference, comparisons between observations and calibrations were carried out for the standard (B to J) pyranometers of the KMA, and for the reference (A) and the standard pyranometers of the Gangneung-Wonju National University. The intercomparisons were carried out between October 24 and October 25, 2018. The sensitivity constants were adjusted according to the results of the data analysis performed on October 24. On October 25, a post-comparison observation was also performed, and the data of the participating pyranometers were verified. The sensitivity constants were calculated using only data corresponding to a solar radiation of $450.0W\;m^{-2}$ or higher. The B and I pyranometers exhibited a small error (${\pm}0.50W\;m^{-2}$), and the applied sensitivity constants were in the range $0.08-0.16{\mu}V(W\;m^{-2})^{-1}$. For the C pyranometer, the adjustment of the sensitivity constant was the largest, i.e., $-0.16{\mu}V(W\;m^{-2})^{-1}$. As a result, the nine candidate pyranometers could be calibrated with an average error of $0.06W\;m^{-2}$ (0.08%) with respect to the KMA reference, which falls within the allowed tolerance of ${\pm}1.00%$ (or ${\pm}4.50W\;m^{-2}$).

키워드

참고문헌

  1. Coulson, K.L., 1975, Solar and Terrestrial Radiation, Methods and Measurements, Academic Press, New York.
  2. Diemoz, H., Campanelli, M., and Estelles, V., 2014, One Year of Measuremnets with a POM-02 Sky Radiometer at an Apline EuroSkyPad Station. Journal of the Meteorological Society of Japan, 92A, 1-16. https://doi.org/10.2151/jmsj.2014-A01
  3. Frohlich, C., 1977, World Radiometric Reference, WMO/ CIMO Final Report, WMO No.490, 97-110.
  4. Frohlich, C., 1991, History of Solar Radiometry and the World Radiation Reference, Metrologia, 28, 111-115. https://doi.org/10.1088/0026-1394/28/3/001
  5. ISO, 1990, ISO9060: Solar energy-Specification and clssification of instruments for measuring hemispherical solar and direct solar radiation.
  6. ISO, 1993, ISO9846: Solar energy-Calibration of a pyranometer using a pyrheliometer.
  7. IPCC, 2013, Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Basis. Contribution of Working Group to the Fifth Assesssment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 659-740.
  8. Jee, J.B., Kim, Y.D., Lee, W.H., and Lee K.T., 2010, Temporal and Spatial Distributions of Solar Radiation with Surface Pyranometer Data in South Korea. Journal of Korean Earth Sciences Society, 31(7), 720-737 (in Korean). https://doi.org/10.5467/JKESS.2010.31.7.720
  9. Jee, J.B., Min, J.S., Jang, M., Kim, B.Y., Zo, I.S., and Lee, K.T., 2017, Sensitivity Analysis of Numerical Weather Prediction Model with Topographic Effect in the Radiative Transfer Process, Atmosphere, 27(4), 385-398 (in Korean). https://doi.org/10.14191/ATMOS.2017.27.4.385
  10. Kazadzis, S., Founda, D., Psiloglou, B.E., Kambezidis, H., Mihalopoulos, N., Sanchez-Lorenzo, A., meleti, C., Raptis, P.I., Pierros, F., and Nabat, P., 2018, Long-term series and trends in surface solar radiation in Athens, Greece. Atmospheric Chemistry and Physics, 18(4), 2395-2411. https://doi.org/10.5194/acp-18-2395-2018
  11. Kim, B.Y., Jee, J.B., Jeong, M.J., Zo, I.S., and Lee, K.T., 2015, Estimation of Total Cloud Amount from Skyviewer Image Data. Journal of Korean Earth Sciences Society, 36(4), 330-340 (in Korean). https://doi.org/10.5467/JKESS.2015.36.4.330
  12. Kim, B.Y., Jee, J.B., Zo, I.S., and Lee, K.T., 2016, Cloud cover retrieved from skyviewer: A validation with human observations. Asia-Pacific Journal of Atmospheric Sciences, 52(1), 1-10. https://doi.org/10.1007/s13143-015-0083-4
  13. Kim, B.Y., Lee, K.T., Zo, I.S., Lee, S.H., Jung, H.S., Rim, S.H., and Jang, J.P., 2018, Calibration of the Pyranometer Sensitivity Using the Integrating Sphere. Asia-Pacific Journal of Atmospheric Sciences, 54(4), 639-648. https://doi.org/10.1007/s13143-018-0085-0
  14. Long, C.N., and Dutton, E.G., 2002, BSRN Global network recommended QC tests, V2.0. BSRN Technical Report.
  15. Pinker, R.T., Laszlo, I., Wang, Y., and Tarpley, J.D., 1996, GCIP GOES shortwave radiation budget: Validation activity. Preprint, Second Int. Scientific Conf. on the Global Energy and Water Cycle, NASA/NSF/NOAA/WCRP, Washington, DC, 245-249.
  16. Tarpley, J.D., Pinker, R.T., and Laszlo, I., 1996, Experimental GOES shortwave radiation budget for GCIP. Preprint, Second Int. Scientific Conf. on the Global Energy and Water Cycle, NASA/NSF/NOAA/WCRP, Washington, DC, 284-285.
  17. Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., Konig-Langlo, G., 2013, The global energy balance from a surface perspective. Climate Dynamics, 40(11), 3107-3134. https://doi.org/10.1007/s00382-012-1569-8
  18. WMO (World Meteorological Organization), 1989, IOM Report No. 43, First WMO Regional Pyrheliometer Comparison of RA II and RA V (Tokyo, 23 Januaty-4 February 1989).
  19. WMO (World Meteorological Organization), 2009, IOM Report No. 97, Second WMO Regional Pyrheliometer Comparison of RA II (Tokyo, 22 Januaty-2 February 2007).
  20. WMO, 2013a), IOM Report No. 112, Baltic Region Pyrheliometer Comparison 2012 (21 May-1 June 2012, Norrkoping, Sweden).
  21. WMO (World Meteorological Organization), 2013a, IOM Report No. 112, Baltic Region Pyrheliometer Comparison 2012 (21 May-1 June 2012, Norrkoping, Sweden).
  22. WMO (World Meteorological Organization), 2013b, IOM Report No. 113, Third WMO Regional Pyrheliometer Comparison of RA II (23 January-3 February 2012; Tokyo, Japan).
  23. WMO (World Meteorological Organization), 2016, IOM Report No. 124, WMO International Pyrheliometer Comparison IPC-XII.
  24. WMO (World Meteorological Organization), 2018, IOM Report No. 130, Fourth WMO Regional Pyrheliometer Comparison of RA II, Jointly held with RA V.
  25. Zerlaut, G., 1989, Solar radiation instrumentation. In R.L. Hulstrom, ed., Solar resources. Cambridge, MA: MIT Press.
  26. Zo, I. S., Jee, J. B., and Lee, K.T., 2014, Development of GWNU (Gangneung-Wonju National University) Onelayer Transfer Model for Calculation of Solar Radiation Distribution of the Korea Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 50, 575-584. https://doi.org/10.1007/s13143-014-0047-0
  27. Zo, I. S., Jee, J. B., Lee, K. T., and Kim, B. Y., 2016, Radiometer Measurement Intercomparison using Absolute Cavity Radiometer in Regional Radiometer Center at Tsukuba, Japan. New&Renewable Energy, 12(4), 5-13. https://doi.org/10.7849/ksnre.2016.12.12.4.005
  28. Zo, I. S., Jee, J. B., Kim, B. Y., and Lee, K. T., 2017, Baseline Surface Radiaiton Network (BSRN) Quality Control of Solar Radiation Data on the Gangneung- Wonju National University Radiation Station. Asia- Pacific Journal of Atmospheric Sciences, 53(1), 11-19. https://doi.org/10.1007/s13143-016-0029-5