DOI QR코드

DOI QR Code

On the parametric instability of multilayered conical shells using the FOSDT

  • Lair, John (Department of Mechanical Engineering, University of New Orleans) ;
  • Hui, David (Department of Mechanical Engineering, University of New Orleans) ;
  • Sofiyev, Abdullah H. (Department of Civil Engineering, Faculty of Engineering, Suleyman Demirel University) ;
  • Gribniak, Viktor (Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University) ;
  • Turan, Ferruh (Department of Civil Engineering, Faculty of Engineering, Ondokuz Mayis University)
  • Received : 2018.10.02
  • Accepted : 2019.03.20
  • Published : 2019.05.10

Abstract

This paper investigates the parametric instability (PI) of multilayered composite conical shells (MLCCSs) under axial load periodically varying the time, using the first order shear deformation theory (FOSDT). The basic equations for the MLCCSs are derived and then the Galerkin method is used to obtain the ordinary differential equation of the motion. The equation of motion converted to the Mathieu-Hill type differential equation, in which the DI is examined employing the Bolotin's method. The expressions for left and right limits of dimensionless parametric instability regions (PIRs) of MLCCSs based on the FOSDT are obtained. Finally, the influence of various parameters; lay-up, shear deformations (SDs), aspect ratio, as well as loading factors on the borders of the PIRs are examined.

Keywords

References

  1. Alankaya, V. and Oktem, A.S. (2016), "Static analysis of laminated and sandwich composite doubly-curved shallow shells", Steel Compos. Struct., Int. J., 20(5), 1043-1066. https://doi.org/10.12989/scs.2016.20.5.1043
  2. Ambartsumian, S.A. (1961), Theory of Anisotropic Shells, State Publishing House for Physical and Mathematical Literature, Moscow, Russia.
  3. Argento, A. and Scott, R. (1993), "Dynamic Instability Of Layered Anisotropic Circular Cylindrical Shells, Part I: Theoretical Development", J. Sound Vib., 162(2), 311-322. https://doi.org/10.1006/jsvi.1993.1120
  4. Avramov, K., Papazov, S. and Breslavsky, I. (2017), "Dynamic instability of shallow shells in three-dimensional incompressible inviscid potential flow", J. Sound Vib., 394, 593-611. https://doi.org/10.1016/j.jsv.2017.01.048
  5. Awrejcewicz, J., Kurpa, L. and Mazur, O. (2016), "Dynamical instability of laminated plates with external cutout", Int. J. Non-Linear Mech., 81, 103-114. https://doi.org/10.1016/j.ijnonlinmec.2016.01.002
  6. Biswal, M., Sahu, S.K., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shellexperimental and FEM results", Steel Compos. Struct., Int. J., 22(6), 1445-1463. https://doi.org/10.12989/scs.2016.22.6.1445
  7. Biswal, M., Sahu, S. and Asha, A. (2017), "Dynamic stability of woven fiber laminated composite shallow shells in hygrothermal environment", Int. J. Struct. Stabil. Dyn., 17(8), 1750084. https://doi.org/10.1142/S0219455417500845
  8. Bolotin, V.V. (1964), Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, CA, USA.
  9. Brischetto, S., Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Interpretation of boundary conditions in the analytical and numerical shell solutions for mode analysis of multilayered structures", Int. J. Mech. Sci., 122, 18-28. https://doi.org/10.1016/j.ijmecsci.2016.12.017
  10. Caliri Jr., M.F., Ferreira, A.J. and Tita, V. (2017), "A new finite element for thick laminates and sandwich structures using a generalized and unified plate theory", Int. J. Numer. Methods Eng., 109(2), 290-304. https://doi.org/10.1002/nme.5292
  11. Darabi, M. and Ganesan, R. (2016), "Non-linear dynamic instability analysis of laminated composite cylindrical shells subjected to periodic axial loads", Compos. Struct., 147, 168-184. https://doi.org/10.1016/j.compstruct.2016.02.064
  12. Darabi, M. and Ganesan, R. (2017), "Non-linear vibration and dynamic instability of internally-thickness-tapered composite plates under parametric excitation", Compos. Struct., 176, 82-104. https://doi.org/10.1016/j.compstruct.2017.04.059
  13. Dey, T. and Ramachandra, L. (2014), "Static and dynamic instability analysis of composite cylindrical shell panels subjected to partial edge loading", Int. J. Non-Linear Mech., 64, 46-56. https://doi.org/10.1016/j.ijnonlinmec.2014.03.014
  14. Fazilati, J. and Ovesy, H. (2010), "Dynamic instability analysis of composite laminated thin-walled structures using two versions of FSM", Compos. Struct., 92(9), 2060-2065. https://doi.org/10.1016/j.compstruct.2009.11.002
  15. Ferreira, A., Carrera, E., Cinefra, M., Roque, C. and Polit, O. (2011), "Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Compos. Part B: Eng., 42(5), 1276-1284. https://doi.org/10.1016/j.compositesb.2011.01.031
  16. Ferreira, A., Carrera, E., Cinefra, M. and Zenkour, A. (2016), "A radial basis functions solution for the analysis of laminated doubly-curved shells by a Reissner-Mixed Variational Theorem", Mech. Adv. Mater. Struct., 23(9), 1068-1079. https://doi.org/10.1080/15376494.2015.1121557
  17. Ganapathi, M. and Balamurugan, V. (1998), "Dynamic instability analysis of a laminated composite circular cylindrical shell", Comput. Struct., 69(2), 181-189. https://doi.org/10.1016/S0045-7949(98)00095-9
  18. Goroshko, O. and Emel'yanenko, V. (1975), "Dynamic stability of layered anisotropic shells", Soviet Appl. Mech., 11(7), 720-725. https://doi.org/10.1007/BF00884839
  19. Hu, H.-T. and Chen, H.C. (2018), "Buckling optimization of laminated truncated conical shells subjected to external hydrostatic compression", Compos. Part B: Eng., 135, 95-109. https://doi.org/10.1016/j.compositesb.2017.09.065
  20. Hui, D. (1985), "Asymmetric postbuckling of symmetrically laminated cross-ply, short cylindrical panels under compression", Compos. Struct., 3(1), 81-95. https://doi.org/10.1016/0263-8223(85)90029-7
  21. Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., Int. J., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301
  22. Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., Int. J., 23(1), 1-16. https://doi.org/10.12989/scs.2017.23.1.001
  23. Kumar, L.R., Datta, P. and Prabhakara, D. (2005), "Dynamic instability characteristics of laminated composite doubly curved panels subjected to partially distributed follower edge loading", Int. J. Solids Struct., 42(8), 2243-2264. https://doi.org/10.1016/j.ijsolstr.2004.09.024
  24. Laoufi, I., Ameur, M., Zidi, M., Bedia, E.A.A. and Bousahla, A.A. (2016), "Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 20(4), 889-911. https://doi.org/10.12989/scs.2016.20.4.889
  25. Liao, C.L. and Cheng, C.R. (1994), "Dynamic Stability Of Stiffened Laminated Composite Plates And Shells Subjected To In-Plane Pulsating Forces", J. Sound Vib., 174, 335-351. https://doi.org/10.1006/jsvi.1994.1280
  26. Ma, Y., Cheng, X., Wang, Z., Guo, X., Zhang, J. and Xu, Y. (2018), "Buckling and post-buckling behaviors of 1/3 composite cylindrical shell with an opening", Steel Compos. Struct., Int. J., 27(5), 555-566.
  27. Ng, T. and Lam, K. (1999), "Dynamic stability analysis of crossply laminated cylindrical shells using different thin shell theories", Acta Mechanica, 134(3-4), 147-167. https://doi.org/10.1007/BF01312653
  28. Ovesy, H. and Fazilati, J. (2014), "Parametric instability analysis of laminated composite curved shells subjected to non-uniform in-plane load", Compos. Struct., 108, 449-455. https://doi.org/10.1016/j.compstruct.2013.09.048
  29. Panda, H., Sahu, S. and Parhi, P. (2015), "Hygrothermal response on parametric instability of delaminated bidirectional composite flat panels", Eur. J. Mech.-A/Solids, 53, 268-281. https://doi.org/10.1016/j.euromechsol.2015.05.004
  30. Pour, H.R., Arani, A.G. and Sheikhzadeh, G. (2017), "Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories", Steel Compos. Struct., Int. J., 24(4), 499-512.
  31. Pradyumna, S. and Bandyopadhyay, J. (2011), "Dynamic instability behavior of laminated hypar and conoid shells using a higher-order shear deformation theory", Thin-Wall. Struct., 49(1), 77-84. https://doi.org/10.1016/j.tws.2010.08.008
  32. Qinkai, H. and Fulei, C. (2013), "Parametric instability of a rotating truncated conical shell subjected to periodic axial loads", Mech. Res. Commun., 53, 63-74. https://doi.org/10.1016/j.mechrescom.2013.08.005
  33. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
  34. Reddy, J. and Liu, C. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
  35. Shariyat, M. (2011), "An accurate double-superposition global-local theory for vibration and bending analyses of cylindrical composite and sandwich shells subjected to thermo-mechanical loads", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(8), 1816-1832. https://doi.org/10.1177/0954406211404742
  36. Sofiyev, A.H. and Kuruoglu, N. (2018), "Determination of the excitation frequencies of laminated orthotropic nonhomogeneous conical shells", Compos. Part B: Eng., 132, 151-160. https://doi.org/10.1016/j.compositesb.2017.08.013
  37. Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., Int. J., 25(5), 581-591.
  38. Tornabene, F., Fantuzzi, N., Bacciocchi, M., Neves, A.M. and Ferreira, A.J. (2016), "MLSDQ based on RBFs for the free vibrations of laminated composite doubly-curved shells", Compos. Part B: Eng., 99, 30-47. https://doi.org/10.1016/j.compositesb.2016.05.049
  39. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "A new doubly-curved shell element for the free vibrations of arbitrarily shaped laminated structures based on Weak Formulation IsoGeometric Analysis", Compos. Struct., 171, 429-461. https://doi.org/10.1016/j.compstruct.2017.03.055
  40. Wu, C.-P. and Chiu, S.-J. (2002), "Thermally induced dynamic instability of laminated composite conical shells", Int. J. Solids Struct., 39(11), 3001-3021. https://doi.org/10.1016/S0020-7683(02)00234-2

Cited by

  1. The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047