
Journal of Internet Computing and Services(JICS) 2019. Apr.: 20(2): 69-76 69

A Systematic Design Automation Method for
RDA-based .NET Component with MDA

☆

Deuk Kyu Kum1*

ABSTRACT

Recent Enterprise System has component driven real-time distributed architecture (RDA) and this kind of architecture should

performed with satisfying strict constraints on life cycle of object and response time such as synchronization, transaction and so on.

Microsoft’s .NET platform supports RDA and is able to implement services including before mentioned time restriction and security service

by only specifying attribute code and maximizing advantages of OMG’s Model Driven Architecture (MDA). In this study, a method to

automatically generate an extended model of essential elements in an enterprise-system-based RDA as well as the platform specific

model (PSM) for Microsoft’s .NET platform are proposed. To realize these ideas, the functionalities that should be considered in enterprise

system development are specified and defined in a meta-model and an extended UML profile. In addition, after defining the UML

profile for .NET specification, these are developed and applied as plug-ins of the open source MDA tool, and extended models are

automatically generated using this tool. Accordingly, by using the proposed specification technology, the profile and tools can easily

and quickly generate a reusable extended model even without detailed coding-level information about the functionalities considered

in the .NET platform and RDA.

☞ keyword : Model Driven Architecture (MDA), Unified Modeling Language (UML) Profile, Microsoft .NET, Real-time Distributed

Architecture (RDA), Attribute Code

1. Introduction

In recent years, business environments have become more

complex, and therefore, enterprises need to be capable of

flexible and agile response. In this context, a real-time

distributed architecture (RDA) is widely accepted as an

architecture that supports enterprise systems [1]. In this type

of architecture, time constraints and security services, such as

object pooling, synchronization services, and transaction

services for object life cycle and response time, are essential

[2]. Initial studies of OMG’s Model Driven Architecture

(MDA) mainly focused on supporting various conversion

formats and source code generation for various development

languages. Recently, a method has been developed to

generate an extended model by applying the elements

necessary for model extension from the basic model.

However, it was limited to specific fields or specific tools

1 Dept. of Information and Communication Engineering, Yuhan
University, Bucheon, Gyeonggi, 14780, Korea.

* Corresponding author (dkkum1@yuhan.ac.kr)
[Received 30 December 2018, Reviewed 23 January 2019,
Accepted 25 February 2019]
☆ This paper is an extended version of the paper presented and

 published in APIC-IST 2018 conference.

such as embedded software, and it lacked model extensibility

for the abovementioned time constraints.

Microsoft’s .NET platform supports RDA. It can be used

to implement components that support services such as time

constraints and security by simply specifying an attribute

code in the source code. Therefore, the benefits of MDA can

be maximized by using the .NET attribute code and Unified

Modeling Language (UML) profile mechanism. However,

compared to the meta-model and UML profile in Enterprise

Java Beans [3], .NET is not yet established. Only a few

studies have focused on the platform-specific model (PSM)

specification technique for .NET.

In this study, the functional elements of various services

that should be considered for developing enterprise systems

are specified and defined as a meta-model and an extended

UML profile. In addition, after defining the UML profile for

PSM specifications for .NET, these are developed and

applied as plug-ins of StarUML [4], an open source MDA

platform, and the design model is generated automatically.

Therefore, even if we do not know detailed coding-level

information about the functions to be considered in the .NET

platform and the RDA using the proposed specification

technique, profile, and tool, the roles of each element of the

http://dx.doi.org/10.7472/jksii.2019.20.2.69

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2019 KSII

A Systematic Design Automation Method for RDA-based .NET Component with MDA

70 2019. 4

Meta-model
Element

UML Profile
Element

UML Base Class

Data Manager Data Manager Class

Entity Data Entity Data Class

Entity Entity Class

Entity Role Entity Role Class

Class Key Key Class

Key Element Key Element Attribute

Key Attribute Key Attribute Attribute

Foreign Key Foreign Key Attribute

Data Manager Data Manager Class

(Table 1) Mapping in UML Profile for ECA

elementt

model must be defined. A reusable expansion model can be

generated easily and quickly if an attribute value can be

established according to the role. Because the proposed

profile is an extension of OMG’s UML profile and MDA

standard, it can be reused in several Meta Object Facility

(MOF) [5]-compliant UML and MDA tools to increase the

productivity, scalability, portability, and maintainability of

the design model.

The remainder of this paper is organized as follows.

Chapter 2 describes related research. Chapter 3 defines

RDA-based service elements and their meta-model. Chapter

4 defines the UML profile to which the specified service is

applied, and it describes the model design process,

presentation method, and transformation process using the

defined profile. Chapter 5 describes case studies. Finally,

Chapter 6 presents the conclusions of this study.

2. Related Works

2.1 UML Profile for EDOC

OMG proposed a UML Profile for Enterprise Distributed

Object Computing (EDOC) for a distributed computing

environment to express events, processing, entities, and

patterns in the component architecture. However, it is

difficult to express functions such as time constraints and

security services such as object pooling, synchronization

service, and transaction service. The main components of the

UML Profile for EDOC are as follows.

First, Enterprise Collaboration Architecture (ECA) [6] is

used for developing an EDOC system with a modeling

framework. Second, UML Profile for Patterns [7] can express

business function object patterns using UML package

notation. Third, UML Profile for ECA provides specifications

for entities, events, and business. Forth, the UML Profile for

MOF specifies the mapping between UML and MOF.

Finally, the UML Profile for Relationships specifies a

standard for relationships in business models. Table 1 shows

the element mapping for entities.

2.2 Wang’s Model to Model Transformation

[8]

Wang proposed methods for automating model-to-model

mapping and transformation to support model-based system

engineering. He defined model transformation rules for both

semantics and syntax and described the mapping and

transformation between models as a meta-model-based

transformation process. In addition, the proposed tool can

automate model generation and testing using extended model

design capabilities with defined rules. However, the

meta-model for the proposed technique and extended model

generation does not comply with OMG’s MOF standard, and

thus, it lacks portability and interoperability. The detailed

specification elements and supporting platform of PSM are

not mentioned.

2.3 .NET Attribute code

In the .NET platform, some specific form may be defined

in advance and be used to control the run time motion; this

is called the “Attribute” code. The attribute class provides

convenient methods for testing the applicable characteristics

and access to designate user. All attributes are directly or

indirectly derived from the attribute, and the characteristics

may be applied to all subject elements [9]. Figure 1 shows

an example of specifying attributes for transactions, object

pooling, Component Object Model (COM), and so on using

attribute codes in a minimal .NET class code. Attributes can

also specify security, synchronization, timely activation, and

other factors.

A Systematic Design Automation Method for RDA-based .NET Component with MDA

한국 인터넷 정보학회 (20권2호) 71

…
[ComVisible(true)]
[Transaction(TransactionOption.Supported)]
[ObjectPooling(true,

MinPoolSize=5,MaxPoolSize=10,
CreationTimeout=5000)]

public class MyComponent : ServicedComponent
{

public MyComponent()
{
…
}

…

(Figure 1) .NET Attribute code format

3. RDA Service Elements

We define a meta-model for functional elements that are

considered essential for developing an RDA-based enterprise

system. The application architecture is determined by the

application requirements. In general, high-end enterprise

applications require high scalability and stability for the basic

user experience; therefore, an RDA is selected for this

purpose. These architectures inevitably use functions such as

synchronization, transaction, object pooling, and security

services depending on the object’s life cycle and response

time [10].

A Serviced Component supports an RDA-based service,

and the service elements mainly include remote access,

instance management, transaction management, synchronization,

persistence, and security services, as shown in Figure 2.

(Figure 2) RDA-Service meta-model

Remote access is a service that invokes an instance of a

locally detached component to request the necessary

functions. Instance management is a service that manages

instance activation/deactivation, pooling, and lifecycle. The

class that wants to be a component supporting RDA-based

service can use Serviced Component class as the base class.

Table 2 summarizes these service elements. In this study, it

is called RDA-Service.

(Table 2) Main RDA-Service elements

Element
Name

Specification
Notation

UML
Base Class

Remark

Transaction
support

«Transaction» Class,
Component

Transaction
complete

«AutoComplete» Method

Security

{Security = “role
 name”,
SetEveryoneAccess
= value}

Class OCL

Synchroniz
ation

«Synchronization» Class

Object
pooling

{Object Pooling =
true,
MinPoolSize =
value, MaxPoolSize
= value,
CreationTimeout =
value}

Class OCL

Object life
cycle

{Just In Time
Activation}

Class OCL

Queue use «Queued»
Class,
Component

4. RDA-.NET Profile

We propose a UML profile that supports RDA-Service

specifications based on the meta-model defined above and a

UML profile for .NET/C#. This profile assumes a

.NET/C#-related UML profile and adds the RDA-Service

elements defined in this study. In this study, it is called

RDA-.NET profile.

4.1 RDA-Service Specification Elements

In Table 3, transaction support expresses the generated

code as having a transaction attribute as a component. A

class or component specified as a «Transaction» stereotype

will have the transaction attribute to be supported when

participating in the transaction as needed. The transaction

termination is specified by the «AutoComplete» method, and

therefore, the generated code automatically determines

whether to commit or cancel the entire transaction including

http://dx.doi.org/10.7472/jksii.2014.00.00

A Systematic Design Automation Method for RDA-based .NET Component with MDA

72 2019. 4

the component depending on whether the error occurred at

the end of the method. It is the role that can be performed.

Security uses the {Security = “role name”, SetEveryoneAccess

= value} tagged value, and the role name specifies the policy

name (role name) that sets security-related policies and roles.

The SetEveryoneAccess property is a setting for control

permissions for all user groups. If the property is set to true,

all user groups are automatically added to the role. Object

pooling refers to a mechanism that activates an object in a

pool rather than creating a new one when the client requests

the component by pooling an instance of the required

component in advance.

Just-In-Time (JIT) activation refers to deactivating an

object immediately when the component completes its work,

even if the client maintains a reference to the component.

When the client invokes the second method in this

component, it instantaneously activates an instance of a new

component. In other words, when Just-In-Time activation is

used, the components used by the client are different each

time the method is invoked. Timely activation helps ensure

transaction accuracy, especially consistency and isolation.

(Table 3) UML profile element for RDA-service

 specification

Element
Name

Specification
Notation

UML
Base Class

Rema
rk

Transaction
support

«Transaction»
Class,
Component

Transaction
complete

«AutoComplete» Method

Security

{Security = “role
name”,
SetEveryoneAccess =
value}

Class OCL

Synchroniz
ation

«Synchronization» Class

Object
pooling

{Object Pooling =
true,
MinPoolSize = value,
MaxPoolSize = value,
CreationTimeout =
value}

Class OCL

Object life
cycle

{Just In Time
Activation}

Class OCL

Queue use «Queued»
Class,
Component

4.2 Element for .NET/C# Specifications of

 RDA-.NET Profile

We propose a meta-model that defines the essential

elements, syntax, and structure of each PSM element for

.NET. The PSM meta-model defines the PSM model and a

design model element to be transformed when the PSM

model is generated. The PSM meta-model defines PSM

meta-model elements, types, and meta-classes for each PSM

model element and describes the constraints. The PSM

meta-model classifies the items to be expressed in PSM by

classifying them as shown in Table 4. Elements common to

all layers, such as “C# Operator,” are described in the

common layer.

Table 5 defines the components of the UML profile for

the .NET / C # specification in the RDA-.NET profile. These

profile elements are intended to extend the PSM meta-model

elements for .NET to generate PSM models for .NET / C #.

4.3 Component development process

applying RDA-.NET profile

We developed a prototype tool based on StarUML to

make the proposed technique more practical and easy to use.

StarUML can objectize modules to access most programs

such as UML meta-model and application object, expose the

API to the outside, and easily develop plug-ins. In this

chapter, we propose the component development process

applying the RDA-.NET Profile and StarUML plug-ins, as

shown in Figure 3. In the requirements analysis phase, the

requirements specification is analyzed to derive functional

and nonfunctional requirements.

First, the RDA-.NET Profile is created in the XML/XMI

format as defined above, and it is developed using StarUML

plug-ins for use. In the next PIM design phase, the service

element based on a real-time distributed architecture is

designed using plug-ins. In this paper, platform independent

design using RDA-.NET Profile is defined as “RDA-PIM.”

In the PSM design stage, the rough RDA-PIM design is used

to create a detailed PSM design for .NET that considers the

.NET platform using the specification elements provided by

the profile. Finally, in the code generation step, the PSM is

generated using RDA-.NET Profile plug-ins, and the .NET

A Systematic Design Automation Method for RDA-based .NET Component with MDA

한국 인터넷 정보학회 (20권2호) 73

Layer
Meta-Model

Element Type Definition Meta Class

Presentation ASPX Stereotype Indicates user interface UML Class

Business .NET Assembly Stereotype A unit of reusable and deployable .NET components UML Component

Persistent Data Type Stereotype Dataset class in which information is stored UML Class

Common C# Operator Stereotype Indicates C# operator UML Operation

(Table 4) PSM meta-model element for .NET

Element

Name

Specification

Notation
Description Base Classes

DotNet

Assembly
<<DotNetAssembly>> C# by compilation result of source file that .NET assembly UML Component

CSharp

SourceFile
<<CSharpSourceFile> C# source file that implementation code comes UML Component

CSharp

Delegate
<<CSharpDelegate>> C# Delegate UML Class

CSharp

Struct
<<CSharpStruct>> C# Struct type UML Class

CSharp

Event
<<CSharpEvent>> When define C# event object UML Operation

CSharp

Property
<<CSharpProperty>>

Display that is C# Property that express attribute of class

or structure
UML Operation

CSharp

Indexer
<<CSharpIndexer>>

Display that is Indexer that can approach class or structure

with general arrangement in C#
UML Operation

ASPX <<ASPX>>
Display that is client side web page by .NET web page

extension life
UML Class

Data Type <<DataType>>
By objective that information is stored, is corresponded in

mapping table to database
UML Class

(Table 5) UML profile element for .NET/C# specification

(Figure 3) Component development process applying the RDA-.NET profile

component artifact including the .Net attribute code is

generated. This study focuses on the scope of PIM and PSM

design except code generation.

A Systematic Design Automation Method for RDA-based .NET Component with MDA

74 2019. 4

5. Case Study

We applied the rental/reservation management function to

Best Car Corporation’s (BCC) sales (car rental) management

system. It is based on StarUML, .NET/C #, and XML/XMI.

5.1 RDA-PIM design

After doing necessary work such as creating the icon file

and registry registration file corresponding to the RDA-.NET

profile defined above, a profile is added to the new project

through StarUML’s profile manager. After including the

RDA-.NET profile, we designed the PIM for the system to be

developed. At this time, the RDA-Service specification

defined above is generated in the required class, component,

or method by using the developed plug-ins.

Figure 4 shows the stereotype of the RDA-.NET profile

and the content of the tag definition item by using the

extension attribute editor of the plug-ins. The set values are

automatically generated in the form of stereotype, tagged

value, OCL, etc.

(Figure 4) Setting values of elements defined in

RDA-.NET profile

(Figure 5) Example of generated RDA-PIM

Figure 5 shows that the “Rental” class supports transaction

attributes and the “checkOut” method is created to support the

“AutoComplete” attribute for transaction termination and “Just

In Time Activation.” In the “CarItem” class, property values

for object pooling are generated in the OCL format.

5.2 Generation of PSM for .NET

After generating the RDA-PIM, we generate the PSM for

.NET using the items from the .NET/C# specification of

RDA-.NET Profile. For this purpose, we define the

transformation rules and constraints necessary for transforming

PIM to PSM. The QVT for transformation between the

MOF-based models established by OMG consists of the

language for model generation, language for model query, and

transformation definition language for describing transformation

rule [11]. Figure 6 shows the definitions used when mapping a

PIM model to a PSM for .NET based on QVT. The

RDA-Service element defined in the RDA-.NET Profile is a

.NET attribute class, and the .NET/C# element is PSM for .NET

and is converted into model definition items. Source/target

conditions are written using OCL Boolean expressions.

Figure 7 shows the result of modeling RDA-PIM and

generating PSM for .NET through the add-in that implements

the transformation rule. The example in Figure 7 shows that

the RDA-Service element defined in the RDA-.NET profile

and the PSM meta-model definition elements for .NET are

generated as a class diagram for the rental/reservation

management module of BCC’s sales management system.

Transformation RDAServiceToAttributeClass
(UMLProfile, .NET) {

source umlProfileElement : UMLProfile :: RDAService;
target attributeClass : .NET :: AttributeClass;
unidirectional;
mapping

umlProfileElement.name <~>
 .NETAttributeClass.name

umlProfileElement.parameter <~>
 .NETAttributeClass.parameter

} ...
S := GetStringTaggedValue(AClass, 'RDA-.NET',

'RDA SERVICES', 'transaction');
if S <> '' then begin

FWriter.WriteLine('[Transaction(%s)]', [S]);
PropAdded := True;

end
else if AClass.StereotypeName = 'Transaction' then

begin
FWriter.WriteLine('[Transaction(TransactionOption.S

upported)]');
PropAdded := True;

end; …

(Figure 6) Realization of transformation rule using

transformation definition language

A Systematic Design Automation Method for RDA-based .NET Component with MDA

한국 인터넷 정보학회 (20권2호) 75

(Figure 7) Rental/reservation administration class diagram (PSM)

6. Conclusions

In this study, we propose an RDA-.NET profile for

RDA-based services such as transaction, security,

synchronization service, and object pooling that are essential

for enterprise applications as well as extension models for

.NET platform. In addition, it was constructed to apply it to

the StarUML open source modeling platform; plug-ins that

was implemented and applied the defined meta-model,

transformation rule, etc.; and generated RDA-PIM and PSM

for .NET.

The RDA-.NET profile is an XMI-based XML document

that can be added or modified easily, and the plug-ins can be

applied easily using an external API. In addition, the

RDA-.NET profile supports OMG’s UML Profile function

and conforms to MOF, and therefore, it can be used with

MOF-compliant UML tools and MDA tools. Therefore, we

can use the proposed method to easily and quickly generate

reusable extension models even if we do not know low-level

information about the functions to be considered in the .NET

platform and RDA, and it can increase the productivity,

scalability, portability, and maintainability of the design

model.

References

[1] H. N. Sad, T. Noria, “A Novel Approach for Integrating

Security in Business Rules Modeling Using Agents and

an Encryption Algorithm,” Journal of Information

Processing Systems, Vol. 12, No. 4, pp. 688-710, 2016.

 http://dx.doi.org/10.3745/jips.03.0056

[2] M. Thirumaran and G. G. Brendha, “Incremental stages

of a semantic framework for automating the changes on

long term composed services,” Human-centric

Computing and Information Sciences, Vol. 6, No. 1, pp.

1-26, 2016.

 http://dx.doi.org/10.1186/s13673-016-0067-0

[3] OMG. Meta-model and UML Profile for Java and EJB

Specification. February 2004. Version 1.0, formal/

04-02-02. An Adopted Specification of the Object

Management Group, Inc.

[4] Open source UML/MDA platform.

A Systematic Design Automation Method for RDA-based .NET Component with MDA

76 2019. 4

◐ 저 자 소 개 ◑

Deuk Kyu Kum

Deuk Kyu Kum is currently a professor in Dept. of Information and Communication Engineering, Yuhan

University, Bucheon, Korea. He received the M.S. and Ph.D. degrees in Computer Science and Engineering

from Soongsil University, Korea, in 2005, 2012, respectively. His research interests include big data analysis

technology, internet and mobile computing, and cloud computing.

E-mail : dkkum1@yuhan.ac.kr

https://sourceforge.net/projects/staruml/

[5] MOF Model to Text Transformation Language RFP,

OMG document ad/04-04-07.

 https://www.omg.org/mof/

[6] OMG. UML Profile for Enterprise Collaboration

Architecture (ECA) V1.0, 2004.

https://www.omg.org/news/meetings/workshops/Web_Ser

vices_USA_Manual/08-5_Casanave.pdf

[7] OMG. UML Profile for Patterns V1.0, 2004.

 https://www.omg.org/spec/category/uml-profile

[8] T. Wang, S. Truptil, F. Benaben, “An automatic

model-to-model mapping and transformation methodology

to serve model-based systems engineering,” Information

Systems and e-Business Management, Vol. 14, pp. 1–

14, 2016.

 http://dx.doi.org/10.1007/s10257-016-0321-z

[9] J. Lowy, “COM and .NET Component Services”, p.

384, O'Reilly, Boston, 2001.

[10] D. S. Platt, “Understanding COM+”, Microsoft Press,

Washington D.C., 1999.

[11] MOF 2.0 Query/Views/Transformations SPEC, OMG

document ad/2002-04-10.

 https://www.omg.org/spec/QVT/About-QVT/

