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Abstract

Purpose - Urban agglomeration construction is one of national strategic plans to accelerate the development of 
industrialization and urbanization in China, which has threatened the eco-environmental quality at the same time. This paper 
selected the urban agglomeration in the middle reaches of the Yangtze River as the research area.
Research design, data, and methodology - The the slack-based measurement (SBM) model considering undesirable outputs 
is applied to measure the eco-efficiency of this urban agglomerations during 2006-2015. 
Results - The empirical results show that average eco-efficiency of the urban agglomeration in the middle reaches of the 
Yangtze River is 0.595. Regional ecological development is unbalanced. The highest eco-efficiency is recorded at Wuhan 
Metropolitan Area, and the lowest one is at the Changsha-Zhuzhou-Xiangtan City Group. Energy consumption and waste 
dust emissions are the key factors led to ecological inefficiency. Based on this, potentials for energy saving and waste dust 
reducing are calculated.  
Conclusions - Finally, this study provides policy implications targeted to promote the coordinating development of economy 
and eco-environment under the construction of urban agglomeration.

Keywords: Eco-efficiency, SBM Model, Urban Agglomeration, Energy Saving and Emission Reduction.
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1. Introduction

China’s industrialization and urbanization have made 
enormous achievements after more than 30 years of reform 
and opening up policy. This rapid development is 
accompanied by the emergence of urban agglomerations, 
which are known as regions with numerous cities around the 
economic core cities (Jiang, Chen, Lei, He, Jia, & Zhang, 
2016). As the National New-type Urbanization Plan 
(2014-2020) issued by Chinese government, the urban 
agglomeration has been given the priority to further 
accelerate the pace of economic development (Fang, 2014). 
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However, the urban agglomeration expansion converts 
original ecological landscapes and ecosystem structures due 
to population gathering and economic activities. As a result, 
the ecological and environmental problems such as energy 
shortages and air pollution have become a huge challenge 
for the urban agglomeration. Therefore, it is essential to 
measure and improve the eco-efficiency of urban 
agglomeration, which is helpful for making out effective 
policies to balance the construction between socio-economic 
development and ecological environmental protection.

The term of eco-efficiency was first proposed as a 
“business link to sustainable development” (Schaltegger & 
Sturm, 1989). According to the World Business Council for 
Sustainable Development (WBCSD), the eco-efficiency refers 
to produce more value with less undesirable output 
(WBCSD, 2000). That is, the eco-efficiency can be improved 
by reducing undesirable output like environment destruction 
while increasing its economic value (Huppes, 2009). As a 
main criterion to measure the decision making units (DMUs) 
from the aspect of economic and environmental targets, the 
eco-efficiency assessment has been widely adopted in a 
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varity of sectors (Dahlstrom & Ekins, 2005; Yu, Shi, Wang, 
Chang, & Cheng, 2016; Molinos-Senante, Gémar, Gómeze, 
Caballero, & Sala-Garrido, 2016). Furthermore, governments 
are also interested in measuring eco-fficiencies at regional 
levels. Since regional eco-efficiency accounts for the 
long-term competitiveness advantages of a region or country 
(Koskela & Vehmas, 2012), it helps government precisely 
characterize local conditions and target the region-specific 
problems (Mickwitz, Melanen, Rosenstrom, & Seppala, 2006) 
which are prerequisites for making reasonable policies.

Eco-efficiency evaluation is a complex and multidisciplinary 
work (Zhao, Cheng, Chau, & Li, 2006). Recently, the 
academic circles have proposed a number of approaches to 
cope with this problem, such as ecological footprint (Cerutti, 
Beccaro, Bagliani, Donno, Bounous, & Cerutti, 2013), life 
cycle analysis (Avadí, Vázquez-Rowe, & Fréon, 2014), factor 
analysis (Singh, Mutry, Gupta, & Dikshit, 2012) and so on. 
However, most of them may generate inaccurate results, 
due to the weights allocated to criteria are subjective. 
Instead, the data envelopment analysis (DEA) can effectively 
evaluate relative efficiency of DMUs, especially under the 
situation of different inputs and outputs. As a non-parametric 
approach initially proposed by Charnes and Cooper (1978), 
DEA does not need a specific production function (Cook & 
Zhu, 2007) or weight setting prior. Actually, DEA assigns 
optimal weights to criteria without personal judgment 
(Farzipoor Saen, 2009; Azadi & Farzipoor Saen, 2012). 
However, the traditional DEA models are radial measures, 
which assume that all inputs and/or outputs change in the 
proportional way. The radial models have another drawback 
that it may overestimate the efficiency on the condition of 
non-zero slacks (Fukuyama & Weber, 2009). To improve it, 
Tone proposed a non-radial model called the slack-based 
measurement (SBM) (Tone, 2001), which does not stick to 
the assumption of proportional changes and deal with slacks 
directly (Chen & Jia, 2016). Thus, the SBM model is 
considered preferable to traditional ones and more in line 
with reality. Despite the SBM model has the above 
advantages, it still cannot conduct undesirable output. 
Generally speaking, there are two kinds of DEA methods to 
dispose undesirable outputs. The first way is directional 
distance function which proposed by Chambers, Chung, and 
Färe (1996). The second one is the slack-based approach 
involves undesirable output called the SBM-undesirable 
model (Tone, 2003), which can deal with input and output 
slacks at the same time without requiring strict proportionate 
changes of input and output. It is adopted by many scholars 
to investigate efficiency (e.g. Li & Hu, 2012; Chang, Zhang, 
Danao, & Zhang, 2013). 

A common feature of the previous studies on regional 
eco-efficiency measurement is that most of them focused on 
national level (Chu, Wu, Zhu, An, & Xiong, 2016) and 
provincial level (Liu, Li, & Xu, 2015). However, little research 
has assessed the eco-efficiency of an urban agglomeration, 
let alone how to improve it. As the main spatial component 

of new types of urbanization over the next decade, the 
urban agglomeration deserves more attention. On the other 
hand, without exploring ecological inefficiency from each 
input and output, most previous researches could not 
disclose that to what extent the input can be saved and to 
what extent the undesirable output can be reduced, which 
are favourable for improving eco-efficiency.

In this paper, we selected the urban agglomeration in the 
middle reaches of the Yangtze River as the study area, 
which is one of the most important urban agglomerations in 
China. The SBM-undesirable approach is adopted to 
measure the eco-efficiencies of 28 cities in this area from 
2006 to 2015. The remainder of this paper is structured as 
follows. Section 2 is devoted to the data and methodology 
used in this study and Section 3 analyzes the empirical 
results in detail. Finally, concluding remarks are drawn in 
Section 4. The Findings show that average eco-efficiency of 
the urban agglomeration in the middle reaches of the 
Yangtze River is 0.595. Regional ecological development is 
unbalanced. Energy consumption and waste dust emissions 
are the key factors led to ecological inefficiency. 

2. Data and Methodology

2.1. Study area

According to the Development Planning of the Urban 
Agglomeration in the Middle Reaches of the Yangtze River 
issued by National Development and Reform Commission of 
China on April 6, 2015, the middle reaches of the Yangtze 
River city group includes the Wuhan Metropolitan Area 
(abbreviated as WMA) in Hubei province, the Changsha- 
Zhuzhou-Xiangtan City Group (abbreviated as CZX) in 
Hunan province and the Central Poyang Lake City Group 
(abbreviated as CPL) in Jiangxi province.

Table 1: Study area

The Urban Agglomeration in the Middle Reaches of the 

Yangtze River

Three Regions Cities

Wuhan 

Metropolitan 

Area (WMA)

Wuhan, Huangshi, Ezhou, Xiaogan, 

Huanggang, Xianning, Yichang, Xiangyang, 

Jingmen, Jingzhou

Changsha-Zhuzh

ou-Xiangtan City 

Group (CZX)

Changsha, Zhuzhou, Xiangtan, Hengyang, 

Yueyang, Changde, Yiyang Loudi

Changsha-Zhuzh

ou-Xiangtan City 

Group (CPL)

Nanchang, Jingdezhen, Pingxiang, Jiujiang, 

Xinyu, Yingtan, Jian, Yichun, Fuzhou and 

Shangrao

Given the availabity of data, we select 28 cities among 
the urban agglomeration as the research samples (excluding 
Xiantao, Tianmen and Qianjiang). WMA includes Wuhan, 
Huangshi, Ezhou, Xiaogan, Huanggang, Xianning, Yichang, 
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Xiangyang, Jingmen, Jingzhou; CZX includes Changsha, 
Zhuzhou, Xiangtan, Hengyang, Yueyang, Changde, Yiyang 
Loudi; CPL includes Nanchang, Jingdezhen, Pingxiang, 
Jiujiang, Xinyu, Yingtan, Jian, Yichun, Fuzhou and Shangrao.

2.2. The indicators and data sources

Table 2: Descriptive statistics of inputs and outputs (2006-2015)

Inputs and 

outputs
Variable Units Mean

Input

Labor Force millionperson 115.44

Energy Consumption 10⁴TCEs 2151.70

Construction Land 

Area

Square 

kilometers
2473.13

The desirable 

output
Regional GDP million Yuan 7773.70

The 

Undesirable 

Output

SO₂Emission 10⁴tons 123.89

Waste Water 10⁴tons 192496.7

Waste Dust 10⁴tons 74.52

The eco-efficiency is a management philosophy to 
minimize ecological damage while maximize economic value 
(Rashidi & Farzipoor Saen, 2015). According to this 
definition, the input and output indicators of the case study 
in this paper are selected as follows:

Inputs are labor force, energy consumption and 
construction land area. Labor force is usually used as input 
in papers concerning the environmental performance 
measurement (e.g. Färe, Grosskopf, & Hernandez-Sancho, 
2004; Tao, Wang, & Zhu, 2016). It includes all employees 
of each city at the end of a year. There are many papers 
took energy consumption into account when deal with 
eco-efficiency (e.g. Tao et al., 2016; Rashidi & Farzipoor 
Saen, 2015). Like most of them, this paper considers the 
consumption of coal, oil and natural gas (converted into 
TCE) as energy consumption. When the proportion of 
construction land area of city area exceeds 50%, which is 
its maximum ecological limit, the ecological environment will 
be greatly impacted. So city construction land is selected as 
the third input.

The desirable output and undesirable output are usually 
represented by regional GDP and environmental pollution 
separately. GDP is widely treated as economic values in 
eco-efficiency analysis (e.g. Zhang & Choi, 2013; Song, 
Song, Yu, & Wang, 2013). In this paper, GDP of each city 
converted into the 1987 constant price is selected as 
desirable output. Given that sulfur dioxide (SO₂) emission is 
mainly produced by fossil fuel consumption and for the lack 
of data availability, SO₂ emission, waste water and waste 
dust are selected out as environmental pollution. To estimate 
eco-efficiency of the urban agglomeration, both economic 
and environmental factors are considered in this paper. 

All the corresponding data (2006-2015) was collected from 
China City Statistical Yearbook (2006-2015), Hubei Statistical 
Yearbook (2006-2015), Hunan Statistical Yearbook (2006- 

2015) and Jiangxi Statistical Yearbook (2006-2015). 
It is worth noting that the research period is from 2006 to 

2015 which includes the years of the Chinese 11th five-year 
plan (2006-2010) as well as Chinese 12th five-year plan 
(2011-2015). Therefore, this study may provide reasonable 
guidance for policy-making and implementation during the 
next five-year plan years.

2.3. The model

DEA models are classified into two categories, namely 
radial models and non-radial models (Rashidi & Farzipoor 
Saen 2015). As a non-radial model, the SBM model not 
only put away the assumption that all inputs and outputs 
should change proportionately, but also incorporate slacks 
into objective function. It assumes that there are n DMUs 

(j=1, 2, ... n), each of which consumes m inputs 
m
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The SBM model (Tone, 2001) is defined as follows:
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However, the SBM model does not take account of 
undesirable output factors. In order to make up for this 
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The non-radial SBM model based on undesirable outputs 
can be expressed as follows:
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Where b

r

g

ri sss  , ,

−  respectively represent the slacks of 
inputs, desirable and undesirable outputs, the optimal *

ρ

represents the efficiency under the condition of all slacks. 

21
s ,s  represent the number of the desirable and undesirable 

outputs. 

Definition 1: DMU0, after running the model (4) is said to 
be eco-efficient, if and only if 1

*

=ρ  and all slacks 

0===

− bg
sss .

3. The empirical results

3.1. General eco-efficiency analysis

The eco-efficiency of 28 researched cities from 2006 to 
2015 is calculated by DEA Solver 5.0 software under 
constant returns to scale. It should be pointed out that the 
higher the eco-efficiency value is the better the city perform. 

Table 3: Eco-efficiency values for 28 cities in the Middle Reaches of Yangtze River (2006-2015)

Cities 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Mean

Wuhan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Huangshi 0.428 0.438 0.425 0.310 0.330 0.434 0.442 0.490 0.320 0.351 0.397

Ezhou 0.305 0.344 0.354 0.309 0.380 0.336 0.343 0.402 0.287 0.327 0.339

Xiaogan 0.633 0.626 0.586 1.000 1.000 1.000 1.000 0.500 0.441 0.456 0.724

Huanggang 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Xianning 0.505 0.578 0.504 0.534 0.611 0.821 0.686 1.000 0.601 0.716 0.656

Yichang 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.515 0.952

Xiangyang 1.000 0.822 0.791 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.961

Jingmen 0.646 0.589 0.526 0.413 0.488 0.582 0.488 0.607 0.488 0.532 0.536

Jingzhou 0.447 0.472 0.451 0.394 0.564 0.609 0.621 0.678 0.434 0.427 0.510

Changsha 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Zhuzhou 0.448 0.470 0.451 0.381 0.563 0.426 0.517 0.518 0.520 0.406 0.470

Xiangtan 0.314 0.312 0.313 0.301 0.351 0.335 0.358 0.400 0.255 0.285 0.322

Hengyang 0.347 0.384 0.350 0.310 0.417 0.360 0.363 0.423 0.297 0.332 0.358

Yueyang 1.000 0.564 0.488 0.361 0.485 0.549 0.552 0.628 0.459 0.535 0.562

Changde 1.000 1.000 1.000 1.000 0.823 0.791 0.882 1.000 0.620 0.673 0.879

Yiyang 0.375 0.401 0.381 0.337 0.394 0.410 0.369 0.402 0.382 0.356 0.381

Loudi 0.353 0.355 0.359 0.311 0.370 1.000 1.000 0.393 0.367 0.344 0.485

Nanchang 1.000 1.000 1.000 1.000 0.828 0.546 0.574 0.525 0.509 0.503 0.748

Jingdezhen 0.297 0.294 0.293 0.273 0.330 0.305 0.314 0.350 0.240 0.259 0.296

Pingxiang 0.448 0.544 0.572 0.543 0.568 0.484 0.689 0.460 0.332 0.445 0.508

Jiujiang 0.391 0.445 0.431 0.422 0.469 0.511 0.412 0.519 0.364 0.355 0.432

Xinyu 0.127 0.154 0.284 1.000 1.000 1.000 1.000 1.000 0.338 0.356 0.626

Yingtan 0.457 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.946

Ji’an 0.631 0.646 1.000 1.000 1.000 0.780 0.878 0.579 0.518 0.495 0.753

Yichun 1.000 1.000 1.000 0.783 0.752 0.585 0.513 0.516 0.444 0.483 0.708

Fuzhou 0.513 0.554 0.474 0.410 0.582 0.604 0.394 0.417 0.433 0.441 0.482

Shangrao 1.000 0.676 0.562 1.000 1.000 1.000 0.716 0.772 1.000 0.477 0.820

WMA 0.696 0.687 0.664 0.696 0.737 0.778 0.758 0.768 0.657 0.632 0.707

CZX 0.605 0.561 0.543 0.500 0.550 0.609 0.630 0.596 0.488 0.491 0.557

CPL 0.586 0.631 0.662 0.743 0.753 0.682 0.649 0.614 0.518 0.481 0.632

Total Urban Agglomeration 0.617 0.629 0.631 0.644 0.678 0.684 0.681 0.660 0.543 0.540 0.631



Minghui Chen, Jianjun Miao / International Journal of Industrial Distribution & Business 10-1 (2019) 9-17 13

From table 1, conclusions can be drawn as follows. 
Firstly, the overall eco-efficiency of the Urban Agglomeration 
in the Middle Reaches of Yangtze River is 0.595, which 
implies that the overall eco-efficiency can be improved by 
40.5% under the current level of production technology. 
Secondly, among the three regions, the Wuhan Metropolitan 
Area’s eco-efficiency value is the highest, with the mean of 
0.707. The average eco-efficiency of the Central Poyang 
Lake City Group is nearly equal to that of the Urban 
Agglomeration in the Middle Reaches of Yangtze River. The 
Changsha-Zhuzhou-Xiangtan City Group performs the worst, 
it has the lowest average eco-efficiency as 0.557, which is 
below the average eco-efficiency at the whole urban 
agglomeration level. Thirdly, in the Wuhan Metropolitan Area, 
Wuhan and Huanggang always performed well for their 
eco-efficiency scores are all equal to 1 in 10 years. This 
means that they are on efficiency frontier every year. In 
contrast, the eco-efficiency values of Huangshi, Ezhou, 
Jingmen and Jingzhou is relative low and all under the 
average level of the Wuhan Metropolitan Area. Fourthly, 
more than half cities in the Changsha-Zhuzhou-Xiangtan City 
Group generated average eco-efficiencies that do not 
exceeded 0.5. Most of them show a kind of stable case 
except Loudi, whose eco-efficiency fluctuated observably with 
an inverted U-shape curing during the researched period. 
The eco-efficiency of Changde and Yueyang presents a 
descending trend as a whole from 2006 to 2015. Only 
Changsha is always environmentally efficient for its 
eco-efficiency scores all reached 1. Finally, most cities in 
the Central Poyang Lake City Group show an uptrend from 
2006 to 2009, however, then show a downtrend from 2013 
to 2015, which is not a promising phenomenon. Take Xinyu 
as an example, its eco-efficiency surged from 0.284 to 1 
(2008-2009). After remain unchanged for 5 years, it drops 
from 1 to 0.338 (2013-2014) dramatically.

3.2. Trends of regional eco-efficiency

As previously mentioned, our research period includes the 
Chinese 11th five-year plan (2006-2010) and the 12th 
five-year plan (2011-2015). In order to provide reasonable 
recommendations for policy-making in next five-year, we 
analyze the trends of average eco-efficiency of the three 
regions and the whole urban agglomeration. Fig. 1 gives the 
comparison of the computational results. We can see that 
eco-efficiency of the Wuhan Metropolitan Area is generally 
higher than that of the other two and the gap becomes 
even bigger during the12th five-year plan period. It implies 
that regional differences appeared in the urban 
agglomeration in the middle reaches of the Yangtze River 
due to different regional economic development and 
industrial structures. The Changsha-Zhuzhou-Xiangtan City 
Group performed really bad in the 11th fiver-year plan 
period, while narrows its gap with the Central Poyang Lake 
City Group in the 12th five-year period. This indicates that 

stricter ecological protection measures have been take to 
improve the eco-efficiency in this area. Unfortunately, the 
value of eco-efficiencies for the three regions as well as the 
whole urban agglomeration show a sharp drop after reaching 
their peak, and then fall to the lowest level over the 
research period in 2015. This phenomenon suggests that 
government and industries attached less importance to 
ecological protection in the11th five-year plan period than in 
the 12th five-year. Blind expansion of urban construction and 
one-sided pursuit of GDP growth destroyed the ecological 
balance and brought huge pressure on natural resources.

Figure 1: Trends of eco-efficiency for the three regions and the 

whole urban agglomeration (2006-2015)

3.3. Decomposition of eco-efficiency

In order to reveal the reasons for differences existing in 
eco-efficiencies for the three regions, we have made 
research on each input’s and output’s efficiency. 
Eco-efficiency in this paper is decomposed into five aspects 
based on model (4): labor inefficiency, construction land 
inefficiency, energy inefficiency, GDP inefficiency, waste 
water inefficiency, waste dust inefficiency, and SO₂ emission 
inefficiency. From the empirical results, we find that 
redundancy rate of GDP is 0, which means that GDP has 
already reached the maximum efficiency. The rest of 
inefficiencies mean that under the current level of 
technology, how much labor, construction land and energy 
could have been saved and how much waste water, waste 
dust and SO₂ emission could have been reduced during the 
production process for achieving the same level of GDP.
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Figure 2: Decomposition of eco-efficiency for the three regions

Fig. 2 shows the redundancy rate changes of three inputs 
and three undesirable outputs during the study period. It can 
be seen that regions with lower redundancy rate generally 

have higher eco-efficiency value. Overall, redundancy rate of 
energy consumption is the highest among three input 
indicators and shows an increasing trend from 2010 to 
2015, namely the period of 12th five-year plan. With regard 
to undesirable output indicators, the redundancy rates of SO₂ 
emissions and waste dust are much higher that of waste 
water. The difference is that the redundancy rates of SO₂ 

emissions shows an obvious decreasing trend as a whole 
during the ten years, while the redundancy rates of waste 
dust fluctuated with a U-shape curve and increasing 
dramatically from 2012 to 2015. These results tell us that 
ecological inefficiencies of these three regions are mainly 
due to industrial excessive energy consumption and waste 
dust emissions. With the implementation of Development for 
the Urban Agglomeration in the Middle Reaches of the 
Yangtze River, economic development is emphasized while 
ecological protection draws little attention, which accounts for 
high level of the energy inefficiency and waste dust 
inefficiency. Therefore, as to improve the eco-efficiency, 
clean production technologies should be adopted as to save 
energy consumption and reduce the industrial waste dust 
emissions.

3.4. Energy saving and waste dust abatement 

potentials

As has mentioned above, inefficiencies of energy 
consumption and waste dust play a big part in ecological 
inefficiency in the Middle Reaches of the Yangtze River. In 
this paper, we use energy saving potential (ESP) and waste 
dust abatement potential (WDAP) to determine how much 
energy input can be saved and how much waste dust 
outputs can be reduced in each city. The amount of ESP is 
calculated by energy redundancy and the amount of WDAP 
is calculated by waste dust excess, correspondingly.

Figure 3: Energy redundancy in each region
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Figure 4: Waste dust emissions excess in each region

According to Fig. 3, energy redundancies of the three 
regions (WMA, CZX and CPL) are all rising during the 
research period. The Changsha-Zhuzhou-Xiangtan City Group 
has the highest energy redundancy, which increased 
dramatically since 2011 and reached to 793 thousand tons 
in 2015. It suggests that energy-wasting is a severe problem 
in this area. Energy redundancies of the other two regions 
are very close with a relatively slow uptrend during research 
period. From Fig. 4, we can see that waste dust excess in 
the Central Poyang Lake City Group started low and 
maintained a slight decrease trend in the period of 11th 
five-year plan. However, the value shows converse change 
tendency and exceeds that of the other two regions in the 
period of 12th five-year plan. This may account for the 
decline of eco-efficiency in this area. The amount of waste 
dust excess in the Changsha-Zhuzhou-Xiangtan City Group 
is quite larger than that of the other two regions in the 
period of 11th five-year plan, but the gap tends to narrow 
down in the next five years. Among the three regions, after 
a surge of waste dust excesses in 2014, only Wuhan 
Metropolitan Area take actions to reduce its emissions of 
waste dust.

4. Conclusions

Accompanied by the rapid acceleration of urbanization 
and industrialization process in China, urban agglomerations 
have become the most dynamic and potential core areas, 
which play an important role in national economic 
development. However, a serious environmental problem 
occurs during the construction of urban agglomeration. 

In this paper, with the consideration of undesirable 
outputs, the eco-efficiency of urban agglomeration in the 
middle reaches of the Yangtze River from 2006 to 2015 
was measured by using the SBM model. Then, in order to 
find effective ways to improve the eco-efficiency, potentials 

for reducing both energy consumption and waste dust 
emissions of each region were estimated. 

The empirical study suggests the following results. First, 
differences exist in different regions obviously. Wuhan 
Metropolitan Area has the highest value of eco-efficiency, 
followed by the Central Poyang Lake City Group. While the 
eco-efficiency of the Changsha-Zhuzhou-Xiangtan City Group 
is at the bottom, which has much room for improvement. 
Second, the whole urban agglomeration performs better in 
the11th five-year plan period than the 12th five-year plan 
period as the overall eco-efficiency shows a downward 
tendency during the latter period. Third, the inefficiency of 
each input and output is different. Generally speaking, 
energy and waste dust are the key inefficient factors as the 
redundancy rates of them are high and with an uprising 
trend. Finally, potentials for energy saving and waste dust 
reduction present different features. Energy redundancies in 
the three regions increase year by year, while waste dust 
excesses fluctuated with a U-shape curve.

Based on the above conclusions, some policy implications 
can be formulated as follows. First, it requires more effort to 
accelerate the industrial structural transformation. Heavy 
industries should be controlled because they not only have 
heavy demand for fossil energy but also bring about serious 
environmental problems.

Heavy industry, which leads to increased fossil energy 
consumption and serious environmental problems, should be 
controlled.

The third industry development like tourism and 
information services should be supported. Second, making 
targeted policies and regulations for different cities and 
strengthening the cooperation among them. At last but not 
least, industrial enterprises’ awareness of environment 
protection should be enhanced. Encouraging clean energy 
technology development by providing financial support.

For further research, eco-efficiencies of other important 
urban agglomerations in China can be investigated to make 
comparison among them. Recently, Malmquist index is 
applied in dynamic analysis of region development. It is 
useful to use the method that combines DEA and Malmquist 
index in future research.
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