DOI QR코드

DOI QR Code

Seismic Fragility Analysis of Ground Supported Horizontal Cylindrical Tank

수평원통형 저장탱크의 지진취약도 해석

  • 나빈 (울산대학교 건설환경공학부) ;
  • 선창호 (울산대학교 건설환경공학부) ;
  • 김익현 (울산대학교 건설환경공학부)
  • Received : 2019.11.12
  • Accepted : 2019.12.05
  • Published : 2019.12.01

Abstract

The fragility analyses for the partially filled horizontal cylindrical tank having a flexible wall were conducted to evaluate seismic performance. An equivalent simplified model with two lumped masses representing to impulsive and convective masses was used to represent the liquid storage system. This simplified model was validated by comparing its time history analysis results with the 3D FSI model results. The horizontal tank was analyzed under bi-directional excitations. Seismic fragility curves for the stability were developed in transverse and longitudinal directions. Fragility curves show that seismic damage for the horizontal storage system is more susceptible in the transverse direction.

유연한 벽체를 가지면서 내용물이 일부분 저장된 수평원통형 저장탱크의 내진성능을 평가하기 위하여 지진취약도 해석을 수행하였다. 충격질량과 유연질량의 두 개의 집중질량을 갖는 등가의 간이모델로 저장탱크를 모델화하였으며, 이 모델의 유효성은 구조물-유체 상호작용을 고려한 3D 해석모델의 응답이력해석을 통해서 검증하였다. 이 등가의 간이모델에 대해서 양방향 지반운동에 대해 지진해석을 수행하였으며 종축방향과 직각방향에 대해 안정성과 관련한 지진취약도 곡선을 도출하였다. 그 결과 수평원통형 저장탱크는 직각방향에 대해서 지진 시 피해가 발생할 가능성이 큰 것으로 평가되었다.

Keywords

References

  1. Housner, G. W. (1963), The dynamic behavior of water tanks, Bull. Seismol. Soc. Am., Vol. 53, No. 2, pp. 381-387, Feb. https://doi.org/10.1785/BSSA0530020381
  2. Haroun, M. A. (1980), Dynamic Analyses of Liquid Storage Tanks, EERL 80-4, California Inst. of Tech., Pasadena, Calif.
  3. Malhotra, P. K., Wenk, T. and Wieland, M. (2000), Simple procedure for seismic analysis of liquid-storage tanks, Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng., Vol. 10, No. 3, pp. 197-201.
  4. Karamanos, S. A., Patkas, L. A. and Platyrrachos, M. A. (2006), Sloshing Effects on the Seismic Design of Horizontal-Cylindrical and Spherical Industrial Vessels, J. Press. Vessel Technol., Vol. 128, No. 3, p. 328. https://doi.org/10.1115/1.2217965
  5. Canonsburg, T. D. (2012), ANSYS Mechanical APDL Verification Manual, Knowl. Creat. Diffus. Util., Vol. 15317, No. October, pp. 724-746.
  6. Wilson E. L. and Khalvati, M. (1983), Finite elements for the dynamic analysis of fluid-solid systems, Int. J. Numer. Methods Eng., Vol. 19, No. 11, pp. 1657-1668. https://doi.org/10.1002/nme.1620191105
  7. Eurocode 8. (2006), Design of structures for earthquake resistance - Part 4: Silos, tanks and pipelines, European committee for Standarization, Brussels.
  8. Carluccio, A. Di., Fabbrocino, G., Salzano, E. and Manfredi, G. (2008), Analysis of Pressurized Horizontal Vessels Under Seismic Excitation, 14 th World Conf. Earthq. Eng., January, pp. 12
  9. Karamanos, S. A., Patkas, L. A. and Platyrrachos, M. A. (2006), Sloshing Effects on the Seismic Design of Horizontal-Cylindrical and Spherical Industrial Vessels, J. Press. Vessel Technol., Vol. 128, No. 3, p. 328.-17. https://doi.org/10.1115/1.2217965
  10. Barton, D. C. and Parker, J. V. (1987), Finite element analysis of the seismic response of anchored and unanchored liquid storage tanks, Earthq. Eng. Struct. Dyn., Vol. 15, No. 3, pp. 299-322. https://doi.org/10.1002/eqe.4290150303
  11. PEER Strong Motion Database, Available: http://peer.berkeley.edu/nga.
  12. Sezen, H. and Whittaker, A. S. (2004), Performance of Industrial Facilities During the 1999, Kocaeli, Turkey Earthquake, 13th World Conf. Earthq. Eng., Vancuver, B.C, Canada.
  13. Burgos, C. A., Jaca, R. C. and Godoy, L. A. (2018), International Journal of PressureVessels and Piping Post-buckling behavior of fl uid-storage steel horizontal tanks, Int. J. Press. Vessel. Pipes., vol. 162, no. December 2017, pp. 46-51. https://doi.org/10.1016/j.ijpvp.2018.03.001
  14. Sezen Halil and Whittaker A S. (2006), Seismic performance of industrial facilities affected by the 1999 Turkey earthquake Jor. of Performance of Constructed facilities, 2006, 20(1), pp .28-36. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:1(28)