DOI QR코드

DOI QR Code

Investigation on the Flexural and Shear Behavior of Fiber Reinforced UHSC Members Reinforced with Stirrups

전단철근과 강섬유로 보강된 초고강도 콘크리트 부재의 휨 및 전단 거동에 관한 연구

  • 여옥경 (한양사이버대학교, 디지털건축도시공학과) ;
  • 지규현 (한양사이버대학교, 디지털건축도시공학과) ;
  • 배백일 (한양사이버대학교, 디지털건축도시공학과,)
  • Received : 2019.11.26
  • Accepted : 2019.12.05
  • Published : 2019.12.01

Abstract

In this paper, effect of steel fiber inclusion, compressive strength of matrix, shear reinforcement and shear span to depth ratio on the flexural behavior of UHPFRC(Ultra High Performance Fiber Reinforced Concrete) were investigated with test of 10-UHPFRC beam specimens. All test specimens were subjected to the flexural static loading. It was shown that steel fiber significantly improve the shear strength of UHPFRC beams. 2% volume fraction of steel fiber change the mode of failure from shear failure to flexural failure and delayed the failure of compressive strut with comparatively short shear span to depth ratio. UHPFRC beams without steel fiber had a 45-degree crack angle and fiber reinforced one had lower crack angle. Shear reinforcement contribution on shear strength of beams can be calculated by 45-degree truss model with acceptable conservatism. Using test results, French and Korean UHPFRC design recommendations were evaluated. French recommendation have shown conservative results on flexural behavior but Korean recommendation have shown overestimation for flexural strength. Both recommendations have shown the conservatism on the flexural ductility and shear strength either.

본 연구에서는 강섬유의 혼입, 매트릭스의 압축강도, 전단철근과 전단경간비가 UHPFRC 휨재에 미치는 영향에 대해 총 10개의 실험체에 대한 실험을 통해 검토하였다. 실험결과 2%의 부피비로 강섬유가 혼입된 경우 파괴 패턴을 전단파괴에서 휨파괴로 바꿀 정도로 높은 전단강도 증진효과를 보유하고 있는 것으로 나타났다. 또한 강섬유는 낮은 전단경간비에서 압축스트럿의 파괴를 지연시키는 효과를 가진 것으로 나타났다. 실험 결과 강섬유의 혼입과 전단경간비의 변화에 따라 균열각이 45도보다 낮은 것으로 나타났다. 실험 결과를 UHPC 설계권고안들과 비교해 본 결과 프랑스의 설계권고안은 보수적으로 평가하였고 한국의 설계권고안은 휨 강도에 대해 다소 과대평가하는 것으로 나타났다. 전단강도에 대해서는 두 설계권고안 모두 보수적으로 평가하는 것으로 나타났다.

Keywords

References

  1. ACI(American Concrete Institute) (2009) ACI 544.4R-88:Design considerations for steel fiber reinforced concrete, American Concrete Institute, Farmington Hills, MI, USA, 1-18
  2. ACI(American Concrete Institute) (2008) ACI 318-08: Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete Institute, Farmington Hills, MI, USA, 165.
  3. fib (International Federation for Structural Concrete) (2013) fib Model Code for Concrete Structures 2010. Ernst & Sohn, Lausanne., 144-150.
  4. Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2
  5. AFGC(Association Francaise de Genie Civil) (2013) Interim Recommendations, Ultra High Performance Fibre Reinforced Concretes, France, 358.
  6. B.A. Graybeal, (2008) Flexural behaviour of Ultra high performance concrete I-girder, Journal of Bridge Engineering, 13(6), 602-610. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(602)
  7. I.H. Yang, C. Joh, B.S. Kim (2010) Structural behavior of ultra-high performance concrete beams subjected to bending, Engineering Structures, 32, 3478-p3487. https://doi.org/10.1016/j.engstruct.2010.07.017
  8. D.Y. Yoo, Y.S. Yoon (2015) Structural performance of ultra high performance concrete beams with different steel fibres, Engineering Structures, 102, 409-423. https://doi.org/10.1016/j.engstruct.2015.08.029
  9. Graybeal, B. A. (2006) Material property characterization of ultra-high performance concrete. Rep. No. FHWA-HRT-06-103, Federal Highway Administration, Washington, D.C. 176.
  10. Voo, Y. L., Poon, W. K., & Foster, S. J. (2010). Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups. Journal of Structural Engineering, 136(11), 1393-1400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234
  11. Xia, J., Mackie, K. R., Saleem, M. A., & Mirmiran, A. (2011). Shear failure analysis on ultra-high performance concrete beams reinforced with high strength steel. Engineering Structures, 33(12), 3597-3609. https://doi.org/10.1016/j.engstruct.2011.06.023
  12. Baby, F., Marchand, P., & Toutlemonde, F. (2013). Shear behavior of ultrahigh performance fiber-reinforced concrete beams. I: Experimental investigation. Journal of Structural Engineering, 140(5), 04013111. https://doi.org/10.1061/(asce)st.1943-541x.0000907
  13. Korea Concrete Institute (2012) Design Guidelines for K-UHPC, KCI-M-12-003, Korea, 1-66.
  14. Park R, Paulay T. (1975) Reinforced Concrete Structures. John Wiley & Sons, Inc: New York, USA., 276-301.
  15. KS(Korean Standard) KS F 2405 (2010) Standard test method for compressive strength of concrete. Korean Standard Information Center.
  16. KS(Korean Standard) KS F 2423 (2011) Method of test for splitting tensile strength of concrete. Korean Standard Information Center
  17. JCI (Japan Concrete Institute) JCI-S-001 (2003) Method of test for fracture energy of concrete by use of notched beam. Japan Concrete Institute, 1-4.
  18. KS(Korean Standard) KS B 0802 (2013) Method of tensile test for metallic materials. Korean Standard Information Center
  19. Sharma, A. K. (1986). Shear strength of steel fiber reinforced concrete beams, ACI Journal, Proceeding, 83(4), 624-628.