DOI QR코드

DOI QR Code

ON THE PROXIMAL POINT METHOD FOR AN INFINITE FAMILY OF EQUILIBRIUM PROBLEMS IN BANACH SPACES

  • Received : 2018.06.06
  • Accepted : 2019.02.07
  • Published : 2019.05.31

Abstract

In this paper, we study the convergence analysis of the sequences generated by the proximal point method for an infinite family of pseudo-monotone equilibrium problems in Banach spaces. We first prove the weak convergence of the generated sequence to a common solution of the infinite family of equilibrium problems with summable errors. Then, we show the strong convergence of the generated sequence to a common equilibrium point by some various additional assumptions. We also consider two variants for which we establish the strong convergence without any additional assumption. For both of them, each iteration consists of a proximal step followed by a computationally inexpensive step which ensures the strong convergence of the generated sequence. Also, for this two variants we are able to characterize the strong limit of the sequence: for the first variant it is the solution lying closest to an arbitrarily selected point, and for the second one it is the solution of the problem which lies closest to the initial iterate. Finally, we give a concrete example where the main results can be applied.

Keywords

Acknowledgement

Supported by : CNPq, IMPA

References

  1. Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in Theory and applications of nonlinear operators of accretive and monotone type, 15-50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
  2. D. Amir, Characterizations of inner product spaces, Operator Theory: Advances and Applications, 20, Birkhauser Verlag, Basel, 1986.
  3. M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl. 90 (1996), no. 1, 31-43. https://doi.org/10.1007/BF02192244
  4. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
  5. H. Brezis, L. Nirenberg, and G. Stampacchia, A remark on Ky Fan's minimax principle, Boll. Un. Mat. Ital. (4) 6 (1972), 293-300.
  6. O. Chadli, Z. Chbani, and H. Riahi, Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities, J. Optim. Theory Appl. 105 (2000), no. 2, 299-323. https://doi.org/10.1023/A:1004657817758
  7. P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), no. 1, 117-136.
  8. K. Fan, A minimax inequality and applications, in Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), 103-113, Academic Press, New York, 1972.
  9. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  10. A. N. Iusem, G. Kassay, and W. Sosa, On certain conditions for the existence of solutions of equilibrium problems, Math. Program. 116 (2009), no. 1-2, Ser. B, 259-273. https://doi.org/10.1007/s10107-007-0125-5
  11. A. N. Iusem and V. Mohebbi, Extragradient methods for nonsmooth equilibrium problems in Banach space, Optimization (2018) doi:10.1080/02331934.2018.1462808.
  12. A. N. Iusem and V. Mohebbi, Extragradient methods for vector equilibrium problems in Banach spaces, Numer. Funct. Anal. Optim. (2019) doi: 10.1080/01630563.2019.1578232.
  13. A. N. Iusem and M. Nasri, Inexact proximal point methods for equilibrium problems in Banach spaces, Numer. Funct. Anal. Optim. 28 (2007), no. 11-12, 1279-1308. https://doi.org/10.1080/01630560701766668
  14. A. N. Iusem and W. Sosa, Iterative algorithms for equilibrium problems, Optimization 52 (2003), no. 3, 301-316. https://doi.org/10.1080/0233193031000120039
  15. A. N. Iusem and W. Sosa, On the proximal point method for equilibrium problems in Hilbert spaces, Optimization 59 (2010), no. 8, 1259-1274. https://doi.org/10.1080/02331931003603133
  16. S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), no. 3, 938-945 (2003). https://doi.org/10.1137/S105262340139611X
  17. H. Khatibzadeh and V. Mohebbi, Monotone and pseudo-monotone equilibrium problems in Hadamard spaces, J. Aust. Math. Soc. (2019) doi: 10.1017/S1446788719000041.
  18. H. Khatibzadeh and V. Mohebbi, Proximal point algorithm for infinite pseudo-monotone bifunctions, Optimization 65 (2016), no. 8, 1629-1639. https://doi.org/10.1080/02331934.2016.1153639
  19. H. Khatibzadeh, V. Mohebbi, and S. Ranjbar, Convergence analysis of the proximal point algorithm for pseudo-monotone equilibrium problems, Optim. Methods Softw. 30 (2015), no. 6, 1146-1163. https://doi.org/10.1080/10556788.2015.1025402
  20. F. Kohsaka and W. Takahashi, Strong convergence of an iterative sequence for maximal monotone operators in a Banach space, Abstr. Appl. Anal. 2004 (2004), no. 3, 239-249. https://doi.org/10.1155/S1085337504309036
  21. B. Martinet, Regularisation d'inequations variationnelles par approximations successives, Rev. Francaise Informat. Recherche Operationnelle 4 (1970), Ser. R-3, 154-158.
  22. A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom. 15 (1999), no. 1-2, 91-100.
  23. L. D. Muu, V. H. Nguyen, and N. V. Quy, On Nash-Cournot oligopolistic market equilibrium models with concave cost functions, J. Global Optim. 41 (2008), no. 3, 351-364. https://doi.org/10.1007/s10898-007-9243-0
  24. T. D. Quoc, P. N. Anh, and L. D. Muu, Dual extragradient algorithms extended to equilibrium problems, J. Global Optim. 52 (2012), no. 1, 139-159. https://doi.org/10.1007/s10898-011-9693-2
  25. S. Reich, A weak convergence theorem for the alternating method with Bregman distances, in Theory and applications of nonlinear operators of accretive and monotone type, 313-318, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
  26. R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization 14 (1976), no. 5, 877-898. https://doi.org/10.1137/0314056
  27. S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal. 75 (2012), no. 2, 742-750. https://doi.org/10.1016/j.na.2011.09.005
  28. M. V. Solodov and B. F. Svaiter, A hybrid projection-proximal point algorithm, J. Convex Anal. 6 (1999), no. 1, 59-70.
  29. H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002), no. 1, 240-256. https://doi.org/10.1112/S0024610702003332