DOI QR코드

DOI QR Code

Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy

  • Zhang, Yinhua (Department of Neuroscience, College of Medicine, Korea University) ;
  • Lee, Yeunkum (Department of Neuroscience, College of Medicine, Korea University) ;
  • Han, Kihoon (Department of Neuroscience, College of Medicine, Korea University)
  • Received : 2018.12.10
  • Published : 2019.05.31

Abstract

The cytoplasmic FMR1-interacting protein family (CYFIP1 and CYFIP2) are evolutionarily conserved proteins originally identified as binding partners of the fragile X mental retardation protein (FMRP), a messenger RNA (mRNA)-binding protein whose loss causes the fragile X syndrome. Moreover, CYFIP is a key component of the heteropentameric WAVE regulatory complex (WRC), a critical regulator of neuronal actin dynamics. Therefore, CYFIP may play key roles in regulating both mRNA translation and actin polymerization, which are critically involved in proper neuronal development and function. Nevertheless, compared to CYFIP1, neuronal function and dysfunction of CYFIP2 remain largely unknown, possibly due to the relatively less well established association between CYFIP2 and brain disorders. Despite high amino acid sequence homology between CYFIP1 and CYFIP2, several in vitro and animal model studies have suggested that CYFIP2 has some unique neuronal functions distinct from those of CYFIP1. Furthermore, recent whole-exome sequencing studies identified de novo hot spot variants of CYFIP2 in patients with early infantile epileptic encephalopathy (EIEE), clearly implicating CYFIP2 dysfunction in neurological disorders. In this review, we highlight these recent investigations into the neuronal function and dysfunction of CYFIP2, and also discuss several key questions remaining about this intriguing neuronal protein.

Keywords

References

  1. Marin O, Valiente M, Ge X and Tsai LH (2010) Guiding neuronal cell migrations. Cold Spring Harbor Persp Biol 2, a001834 https://doi.org/10.1101/cshperspect.a001834
  2. Kevenaar JT and Hoogenraad CC (2015) The axonal cytoskeleton: from organization to function. Front Mol Neurosci 8, 44 https://doi.org/10.3389/fnmol.2015.00044
  3. Spence EF and Soderling SH (2015) Actin out: regulation of the synaptic cytoskeleton. J Biol Chem 290, 28613-28622 https://doi.org/10.1074/jbc.R115.655118
  4. Yan Z, Kim E, Datta D, Lewis DA and Soderling SH (2016) Synaptic actin dysregulation, a convergent mechanism of mental disorders? J Neurosci 36, 11411-11417 https://doi.org/10.1523/JNEUROSCI.2360-16.2016
  5. Choi S-Y and Han K (2015) Emerging role of synaptic actin-regulatory pathway in the pathophysiology of mood disorders. Animal Cells and Systems 19, 283-288 https://doi.org/10.1080/19768354.2015.1086435
  6. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE and Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14, 285-293 https://doi.org/10.1038/nn.2741
  7. Takenawa T and Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nature reviews. Mol Cell Biol 8, 37-48
  8. Chen Z, Borek D, Padrick SB et al (2010) Structure and control of the actin regulatory WAVE complex. Nature 468, 533-538 https://doi.org/10.1038/nature09623
  9. Mendoza MC (2013) Phosphoregulation of the WAVE regulatory complex and signal integration. Semin Cell Develop Biol 24, 272-279 https://doi.org/10.1016/j.semcdb.2013.01.007
  10. Krause M and Gautreau A (2014) Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 15, 577-590 https://doi.org/10.1038/nrm3861
  11. Lee Y, Kim D, Ryu JR et al (2017) Phosphorylation of CYFIP2, a component of the WAVE-regulatory complex, regulates dendritic spine density and neurite outgrowth in cultured hippocampal neurons potentially by affecting the complex assembly. Neuroreport 28, 749-754 https://doi.org/10.1097/WNR.0000000000000838
  12. Schenck A, Bardoni B, Moro A, Bagni C and Mandel JL (2001) A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc Natl Acad Sci U S A 98, 8844-8849 https://doi.org/10.1073/pnas.151231598
  13. Bagni C, Tassone F, Neri G and Hagerman R (2012) Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 122, 4314-4322 https://doi.org/10.1172/JCI63141
  14. Napoli I, Mercaldo V, Boyl PP et al (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134, 1042-1054 https://doi.org/10.1016/j.cell.2008.07.031
  15. De Rubeis S, Pasciuto E, Li KW et al (2013) CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron 79, 1169-1182 https://doi.org/10.1016/j.neuron.2013.06.039
  16. Abekhoukh S and Bardoni B (2014) CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Front Cellular Neurosci 8, 81
  17. Yoon KJ, Nguyen HN, Ursini G et al (2014) Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell 15, 79-91 https://doi.org/10.1016/j.stem.2014.05.003
  18. Oguro-Ando A, Rosensweig C, Herman E et al (2015) Increased CYFIP1 dosage alters cellular and dendritic morphology and dysregulates mTOR. Mol Psychi 20, 1069-1078 https://doi.org/10.1038/mp.2014.124
  19. Bozdagi O, Sakurai T, Dorr N, Pilorge M, Takahashi N and Buxbaum JD (2012) Haploinsufficiency of Cyfip1 produces fragile X-like phenotypes in mice. PloS one 7, e42422 https://doi.org/10.1371/journal.pone.0042422
  20. Chung L, Wang X, Zhu L et al (2015) Parental origin impairment of synaptic functions and behaviors in cytoplasmic FMRP interacting protein 1 (Cyfip1) deficient mice. Brain Res 1629, 340-350 https://doi.org/10.1016/j.brainres.2015.10.015
  21. Kumar V, Kim K, Joseph C et al (2013) C57BL/6N mutation in cytoplasmic FMRP interacting protein 2 regulates cocaine response. Science 342, 1508-1512 https://doi.org/10.1126/science.1245503
  22. Han K, Chen H, Gennarino VA, Richman R, Lu HC and Zoghbi HY (2015) Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice. Human Mol Gen 24, 1813-1823 https://doi.org/10.1093/hmg/ddu595
  23. Zhang Y, Kang H, Lee Y et al (2019) Smaller body size, early postnatal lethality, and cortical extracellular matrix-related gene expression changes of Cyfip2-null embryonic mice. Front Mol Neurosci 11, 482 https://doi.org/10.3389/fnmol.2018.00482
  24. Nakashima M, Kato M, Aoto K et al (2018) De Novo hotspot variants in CYFIP2 cause early-onset epileptic encephalopathy. Ann Neurol 83, 794-806 https://doi.org/10.1002/ana.25208
  25. Peng J, Wang Y, He F et al (2018) Novel west syndrome candidate genes in a Chinese cohort. CNS Neurosci Ther 24, 1196-1206 https://doi.org/10.1111/cns.12860
  26. Pathania M, Davenport EC, Muir J, Sheehan DF, Lopez-Domenech G and Kittler JT (2014) The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Translational Psychiatry 4, e374 https://doi.org/10.1038/tp.2014.16
  27. Sala C and Segal M (2014) Dendritic spines: the locus of structural and functional plasticity. Physiological Reviews 94, 141-188 https://doi.org/10.1152/physrev.00012.2013
  28. Collins MO, Husi H, Yu L et al (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97 Suppl 1, 16-23 https://doi.org/10.1111/j.1471-4159.2005.03507.x
  29. Bayes A, van de Lagemaat LN, Collins MO et al (2011) Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 14, 19-21 https://doi.org/10.1038/nn.2719
  30. Li J, Zhang W, Yang H et al (2017) Spatiotemporal profile of postsynaptic interactomes integrates components of complex brain disorders. Nat Neurosci 20, 1150-1161 https://doi.org/10.1038/nn.4594
  31. Han K, Holder JL Jr, Schaaf CP et al (2013) SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature 503, 72-77 https://doi.org/10.1038/nature12630
  32. Huttlin EL, Jedrychowski MP, Elias JE et al (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-1189 https://doi.org/10.1016/j.cell.2010.12.001
  33. Schenck A, Bardoni B, Langmann C, Harden N, Mandel JL and Giangrande A (2003) CYFIP/Sra-1 controls neuronal connectivity in drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38, 887-898 https://doi.org/10.1016/S0896-6273(03)00354-4
  34. Pan L, Zhang YQ, Woodruff E and Broadie K (2004) The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation. Curr Biol 14, 18 63-1870 https://doi.org/10.1016/j.cub.2004.09.085
  35. Abekhoukh S, Sahin HB, Grossi M et al (2017) New insights into the regulatory function of CYFIP1 in the context of WAVE- and FMRP-containing complexes. Dis Mod Mech 10, 463-474 https://doi.org/10.1242/dmm.025809
  36. Zhao L, Wang D, Wang Q, Rodal AA and Zhang YQ (2013) Drosophila cyfip regulates synaptic development and endocytosis by suppressing filamentous actin assembly. PLoS Genetics 9, e1003450 https://doi.org/10.1371/journal.pgen.1003450
  37. Trowe T, Klostermann S, Baier H et al (1996) Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 123, 439-450 https://doi.org/10.1242/dev.123.1.439
  38. Baier H, Klostermann S, Trowe T, Karlstrom RO, Nusslein-Volhard C and Bonhoeffer F (1996) Genetic dissection of the retinotectal projection. Development 123, 415-425 https://doi.org/10.1242/dev.123.1.415
  39. Pittman AJ, Gaynes JA and Chien CB (2010) nev (cyfip2) is required for retinal lamination and axon guidance in the zebrafish retinotectal system. Develop Biol 344, 784-794 https://doi.org/10.1016/j.ydbio.2010.05.512
  40. Cioni JM, Wong HH, Bressan D, Kodama L, Harris WA and Holt CE (2018) Axon-axon interactions regulate topographic optic tract sorting via CYFIP2-dependent WAVE complex function. Neuron 97, 1078-1093 e1076 https://doi.org/10.1016/j.neuron.2018.01.027
  41. Marsden KC, Jain RA, Wolman MA et al (2018) A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold. Cell Rep 23, 878-887 https://doi.org/10.1016/j.celrep.2018.03.095
  42. Kirkpatrick SL, Goldberg LR, Yazdani N et al (2017) Cytoplasmic FMR1-Interacting protein 2 is a major genetic factor underlying binge eating. Biological Psychiatry 81, 757-769 https://doi.org/10.1016/j.biopsych.2016.10.021
  43. Keane TM, Goodstadt L, Danecek P et al (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289-294 https://doi.org/10.1038/nature10413
  44. Chen B, Chou HT, Brautigam CA et al (2017) Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. eLife 6, e29795 https://doi.org/10.7554/eLife.29795
  45. Darnell JC, Van Driesche SJ, Zhang C et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247-261 https://doi.org/10.1016/j.cell.2011.06.013
  46. Lee JH, Kim HJ, Yoon JM et al (2016) Interstitial deletion of 5q33.3q35.1 in a boy with severe mental retardation. Korean J Pediat 59, S19-S24 https://doi.org/10.3345/kjp.2016.59.11.S19
  47. Spranger S, Rommel B, Jauch A, Bodammer R, Mehl B and Bullerdiek J (2000) Interstitial deletion of 5q33.3q35.1 in a girl with mild mental retardation. Am J Med Genet 93, 107-109 https://doi.org/10.1002/1096-8628(20000717)93:2<107::AID-AJMG5>3.0.CO;2-8
  48. Focking M, Lopez LM, English JA et al (2015) Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol Psych 20, 424-432 https://doi.org/10.1038/mp.2014.63
  49. Tiwari SS, Mizuno K, Ghosh A et al (2016) Alzheimerrelated decrease in CYFIP2 links amyloid production to tau hyperphosphorylation and memory loss. Brain : J Neurol 139, 2751-2765 https://doi.org/10.1093/brain/aww205
  50. Gursoy S and Ercal D (2016) Diagnostic Approach to Genetic Causes of Early-Onset Epileptic Encephalopathy. J Child Neurol 31, 523-532 https://doi.org/10.1177/0883073815599262
  51. McTague A, Howell KB, Cross JH, Kurian MA and Scheffer IE (2016) The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 15, 304-316 https://doi.org/10.1016/S1474-4422(15)00250-1
  52. Bonaccorso CM, Spatuzza M, Di Marco B et al (2015) Fragile X mental retardation protein (FMRP) interacting proteins exhibit different expression patterns during development. Int J Devel Neurosci 42, 15-23 https://doi.org/10.1016/j.ijdevneu.2015.02.004
  53. Zhang Y, Chen K, Sloan SA et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34, 11929-11947 https://doi.org/10.1523/JNEUROSCI.1860-14.2014
  54. Bassell GJ and Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201-214 https://doi.org/10.1016/j.neuron.2008.10.004
  55. Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N and Schuman EM (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453-466 https://doi.org/10.1016/j.neuron.2012.02.036
  56. Nelson SB and Valakh V (2015) Excitatory/Inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87, 684-698 https://doi.org/10.1016/j.neuron.2015.07.033
  57. Lee Y, Zhang Y, Kim S and Han K (2018) Excitatory and inhibitory synaptic dysfunction in mania: an emerging hypothesis from animal model studies. Exp Mol Med 50, 12 https://doi.org/10.1038/s12276-018-0028-y
  58. Hsiao K, Harony-Nicolas H, Buxbaum JD, Bozdagi-Gunal O and Benson DL (2016) Cyfip1 Regulates Presynaptic Activity during Development. J Neurosci 36, 1564-1576 https://doi.org/10.1523/JNEUROSCI.0511-15.2016
  59. Chen B, Brinkmann K, Chen Z et al (2014) The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156, 195-207 https://doi.org/10.1016/j.cell.2013.11.048
  60. Contractor A, Klyachko VA and Portera-Cailliau C (2015) altered neuronal and circuit excitability in fragile X syndrome. Neuron 87, 699-715 https://doi.org/10.1016/j.neuron.2015.06.017