DOI QR코드

DOI QR Code

Study on noise prediction of non-cavitating underwater propeller with hull-appendages effect

선체-부가물 영향을 고려한 비공동 수중추진기의 소음예측 연구

  • 최지훈 (서울대학교 기계항공공학부) ;
  • 설한신 (선박해양플랜트연구소) ;
  • 박일룡 (동의대학교 조선해양공학과) ;
  • 이수갑 (서울대학교 기계항공공학부)
  • Received : 2019.01.25
  • Accepted : 2019.04.16
  • Published : 2019.05.31

Abstract

In this study, to predict the noise of a submarine propeller which is going to become bigger and faster, the non - cavitating propeller noise was predicted based on the numerical analysis which considering the interaction of the hull - appendages - propeller. In order to predict the radiated noise of the propeller, the flow field for the entire region of hull-appendages-propeller was computed by CFD (Computational Fluid Dynamics). And the noise for the thickness noise and the load noise was numerically predicted using FW-H (Ffwocs Williams-Hawkings) acoustic analogy. Numerical noise prediction results were verified by model tests and showed good agreement with the measurement results in predicting total noise level and low frequency noise.

본 연구에서는 대형화, 고속화되어가는 잠수함 추진기의 소음을 보다 정확하게 예측하기 위하여 선체-부가물-추진기의 상호작용이 묘사되는 유동 수치해석을 토대로 비공동 추진기 소음을 예측하였다. 추진기 방사 소음을 예측하기 위해 선체-부가물-추진기 전체영역에 대한 유동 정보를 전산유체역학 해석으로 얻은 뒤, FW-H(Ffowcs Williams-Hawkings) 음향상사법을 적용하여 두께소음, 하중소음에 대한 소음을 수치적으로 예측하였다. 수치적 소음예측 결과는 모형시험을 통해 검증하였으며, 전체 소음 수준과 저주파 대역 소음예측에 있어 계측결과와 좋은 일치를 보였다.

Keywords

GOHHBH_2019_v38n3_247_f0001.png 이미지

Fig. 1. Test set-up.

GOHHBH_2019_v38n3_247_f0002.png 이미지

Fig. 2. Grid for flow simulation.

GOHHBH_2019_v38n3_247_f0003.png 이미지

Fig. 3. Grid around propeller.

GOHHBH_2019_v38n3_247_f0004.png 이미지

Fig. 4. Nominal wake at propeller plane.

GOHHBH_2019_v38n3_247_f0005.png 이미지

Fig. 5. Averaged Velocity on propeller plane.

GOHHBH_2019_v38n3_247_f0006.png 이미지

Fig. 6. Spectrum of forces on control surface.

GOHHBH_2019_v38n3_247_f0007.png 이미지

Fig. 7. Numerical prediction result at the observer point.

GOHHBH_2019_v38n3_247_f0008.png 이미지

Fig. 8. Directivity pattern of numerical prediction.

GOHHBH_2019_v38n3_247_f0009.png 이미지

Fig. 9. Numerical and Experimental noise spectrum results.

GOHHBH_2019_v38n3_247_f0010.png 이미지

Fig. 10. Pressure time signal at an arbitrary point on the blade surface.

Table 1. Dimensions of DARPA Suboff and E1619.

GOHHBH_2019_v38n3_247_t0001.png 이미지

Table 2. LCT model test conditions.

GOHHBH_2019_v38n3_247_t0002.png 이미지

Table 3. Self-propulsion solution.

GOHHBH_2019_v38n3_247_t0003.png 이미지

References

  1. W. K. Blake, Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions (Academic press, London, 2017) pp. 507-510.
  2. H. Seol, J. C. Suh, and S. Lee, "Development of hybrid method for the prediction of underwater propeller noise," J. Sound and Vibration 288, 345-360 (2005). https://doi.org/10.1016/j.jsv.2005.01.015
  3. F. Salvatore, C. Testa, and L. Greco, "Coupled hydrodynamics-hydroacoustics BEM modelling of marine propellers operating in a wakefield," Proc. SMP 9, 537-547 (2009).
  4. H. Seol, "Time domain method for the prediction of pressure fluctuation induced by propeller sheet cavitation: Numerical simulations and experimental validation," Ocean Engineering 72, 287-296 (2013). https://doi.org/10.1016/j.oceaneng.2013.06.030
  5. C. Testa, S. Ianniello, and F. Salvatore, "A Ffowcs Williams and Hawkings formulation for hydroacoustic analysis of propeller sheet cavitation," J. Sound and Vibration 413, 421-441 (2018). https://doi.org/10.1016/j.jsv.2017.10.004
  6. T. Kim, J. Jeon, S. Chu, S. Kim, and W. Joo, "Numerical and experimental prediction methods of cavitation noise radiated by underwater propellers," Proc. Meetings on Acoustics. 28, 070004 (2016).
  7. N. Groves, T. Huang, and M. Chang, "Geometric characteristics of DARPA Suboff models," DTRC/SHD-1298-01, David Taylor Research Center-Ship Hydromechanics Department, Department of the Navy Rep., 1989.
  8. F. Di Felice, M. Felli, M. Liefvendahl, and U. Svennberg, "Numerical and experimental analysis of the wake behavior of a generic submarine propeller," First International Symposium on Marine Propulsors, 158-164 (2009).
  9. H. Seol and S. -Yon. Kim, "Study on the analysis of model propeller tip vortex cavitation inception" (in Korean), J. Acoust. Soc. Kr. 37, 387-395 (2018).
  10. J. Banks, A. Phillips, and S. Turnock, "Free surface CFD prediction of components of ship resistance for KCS," In: NuTTS '10: 13th Numerical Towing Tank Symposium, 1-6 (2010).
  11. S. Keye and O. Brodersen, "Investigations of fluid-structure coupling and turbulence model effects on the DLR results of the fifth AIAA CFD drag prediction workshop," 31st AIAA Applied Aerodynamics Conference, 2509-2535 (2013).
  12. J. H. Kim, J. E. Choi, B. J. Choi, S. H. Chung, and H. W. Seo, "Development of energy-saving devices for a full slow-speed ship through improving propulsion performance," International J. of Naval Architecture and Ocean Engineering 7.2, 390-398 (2015). https://doi.org/10.1515/ijnaoe-2015-0027
  13. C. Y. Byeon, J. I. Kim, I. R. Park, and H. S. Seol, "Resistance and self-propulsion simulations for the DARPA Suboff submarine by using RANS method," J. of Korean Society for Computational Fulid Engineering, 23, 36-46 (2018).
  14. M. J. Lighthill, "On sound generated aerodynamically I. General theory," Proc. R. Soc. Lond. A 211.1107, 564-587 (1952). https://doi.org/10.1098/rspa.1952.0060
  15. J. E. Ffowcs Williams and L. D. Hawkings, "Sound generation by turbulence and surfaces in arbitrary motion," Phil. Trans. R. Soc. Lond. A 264.1151, 321-342 (1969). https://doi.org/10.1098/rsta.1969.0031
  16. K. S. Brentner and F. Farassat, "Modeling aerodynamically generated sound of helicopter rotors," Progress in Aerospace Sciences 39, 83-120 (2003). https://doi.org/10.1016/S0376-0421(02)00068-4