DOI QR코드

DOI QR Code

A Universal Middleware-based Small Satellite Payload Power Module Design

유니버설미들웨어기반 소형위성 탑재체 전력모듈설계

  • Lee, Hae-Jun (Department of SaTReC, Korea Advanced Institute Science and Technology)
  • Received : 2019.02.07
  • Accepted : 2019.03.29
  • Published : 2019.05.31

Abstract

A Small-Sat Power System Design and Development should be depend on space environment such as solar wind with Electromagnetic field by hurdle of techniques. It is surmount solution of trend that will unitize and converge with power module in these days. The level of modularize means that applying Universal Middleware for payload power module requirements. The scope of target system is a main power provider module and operational subunit that can be implemented with the final power module distribution loads to consume for continuous process. A Universal Middleware strengthen to build power module from satellite power system should be accuracy and consuming data. A Power Service Module and dynamic system drive interactive management between power distribution and consumer module by Range Control. Consequently, suggesting evaluation, unexpecting payload system power consumer that makes fine variable resources in the development design process and efficiency.

소형인공위성 전력시스템체계 설계 및 개발방법은 태양풍 자계인 우주환경의 영향에 따라 기술적 제약이 큰 편이다. 이를 극복하기 위해 최근 전력모듈을 융합화와 유닛화 단계별 개발 방식으로 변화 하고 있다. 모듈화 단계에서는 탑재체 전력공급 모듈 요구조건과 함께 유니버설미들웨어를 사용하여 융합하였다. 융합모듈화대상은 탑재체에서 전력분배, 부하관리, 서브유닛의 전원공급체계와 지속성을 고려한 최종모듈 설계 및 개발 단계를 범위로 한다. 본 연구는 위성본체에서 공급되는 전력모듈을 유니버설미들웨어 기반으로 전력모듈의 정밀성과 수요처모듈데이터를 컨텐츠화 하였다. 이 동적시스템과 전력서비스 모듈화는 전력분배모듈과 전원공급모듈간 상호작용으로 Range Control 알고리즘으로 제어된다. 그리하여 전력모듈 설계단계에서 탑재체 전력수요 변수의 변동성에 따른 불확실성을 해소하고 설계의 효율성을 제시하였다.

Keywords

HOJBC0_2019_v23n5_487_f0001.png 이미지

Fig. 1 Power Module Design Platform of Universal Middleware Architecture

HOJBC0_2019_v23n5_487_f0002.png 이미지

Fig. 2 Life Cycle Management & Service Delieverable Service Bundle

HOJBC0_2019_v23n5_487_f0003.png 이미지

Fig. 3 LVPS Circuit Hardware Module Circuit

HOJBC0_2019_v23n5_487_f0004.png 이미지

Fig. 4 LVPS Circuit Hardware Module Simulation

HOJBC0_2019_v23n5_487_f0005.png 이미지

Fig. 5 PDM Circuit Hardware Module

HOJBC0_2019_v23n5_487_f0006.png 이미지

Fig. 6 PDM Circuit Hardware Module Simulation

HOJBC0_2019_v23n5_487_f0007.png 이미지

Fig. 7 LVPS Fourier Range Control

HOJBC0_2019_v23n5_487_f0008.png 이미지

Fig. 8 PDM Fourier Range Control

HOJBC0_2019_v23n5_487_f0009.png 이미지

Fig. 9 LVPS Power Flow OriginLab Report

HOJBC0_2019_v23n5_487_f0010.png 이미지

Fig.10 PDM Current OriginLab Report

Table. 1 External Parameter

HOJBC0_2019_v23n5_487_t0001.png 이미지

Table. 2 Internal Parameter

HOJBC0_2019_v23n5_487_t0002.png 이미지

Table. 3 R1 LVPS Parts List

HOJBC0_2019_v23n5_487_t0003.png 이미지

Table. 4 R4 PDM Requirement List

HOJBC0_2019_v23n5_487_t0004.png 이미지

References

  1. Y. Wang, L. Lou, B. Chen, Y. Zhang, K. Tang, L. Qiu, S. Liu, and Y. Zheng, "A 260-mW Ku-Band FMCW Transceiver for Synthetic Aperture Radar Sensor With 1.48-GHz Bandwidth in 65-nm CMOS Technology," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4385-4399, May. 2017. https://doi.org/10.1109/TMTT.2017.2700271
  2. M.A. Chitsazan, and A. M. Trzynadlowski, "A New Approach to LCL Filter Design for Grid-Connected PV Source," American Journal of Electrical Power and Energy Systems, vol. 6, no. 4, pp. 57-63, Jul. 2017. https://doi.org/10.11648/j.epes.20170604.14
  3. S. W. Park, H. S. Park, J. H. Yang, and K. D. Kim, "Electrical Power Subsystem Design for Small LEO Satellite Applications," in Proceeding of the Society for the Advancement of Socio-Electronics 2018 Spring Conference, pp. 550-551, 2018.
  4. H.J. Lee, C.G. Hwang, and C.P. Yoon, "System Visibility of Universal Middleware Pervasive Memorial Engine," Journal of the Korea Inst. of Information&Communication Engineering, vol.21, no.11, pp.2115-2120, 2017. https://doi.org/10.6109/JKIICE.2017.21.11.2115
  5. S.L. Lee, and S. B. Lim, "Analysis of Relay Pulse Command Requirements Considering Internal Environment of Satellite," in Proceeding of the Korean Society for Aeronautical & Space Science 2017 Fall Conference, pp. 978-979, 2017.
  6. H.J. Lee, "Plasma, the First State of the Universe," Vacuum Magazine: Report Jun. 2014.
  7. D. Seider, A. Schreiber, T. Marquardt, and M. Bruggeman, "Visualizing Modules and Dependencies of OSGi-Based Applications," 2016 IEEE Working Conference on Software Visualization, pp. 96-100, 2016.
  8. S. B. Lim, H. J. Jeon, K. S. Kim, and T. Y. Kim, "The Analysys of the LCL Set-up Parameter for Satellite Power Distribution," Korea Aerospace Research Institute: Report vol. 9, no. 2, 2011.
  9. G.W. Yoon, J.W. Koh, and Y.W. Lee, "Investigation of Applications Technology for High Resolution SAR Images," Journal of the Korea Institute of Military Science and Technology, vol. 13, no. 1, pp. 105-113, Feb. 2010.
  10. H.R. Jeong, and H.S. Lim, "Technical Development Trend of International Synthetic Aperture Radar Satellite," Korea Aerospace Research Institute: Report vol. 7, no. 2, 2009.
  11. J. Paulkovich, "Solar Array Regulators of Explorer Satellites XII, XIV, XV, XVIII, XXI, XXVI, XXVII, and Arial 1," National Aeronautics and Space Administration: NASA Technical Note TN D-3983.
  12. H.H. Lee, "Trend of European Spacecraft Simulator Development," Korea Aerospace Research Institute: Report vol. 6, no. 2, 2008.
  13. OSGi Alliance RFP 174 Initial IoT Requirements Draft, [Internet]. Available: https://github.com/osgi/design
  14. H. Sood, V. M. Srivastava, and G. Singh, "Advanced MOSFET Technologies for Next Generation Communication System Perspective and Challenges: A Review," Journal of Engineering Science and Technology Review, vol. 11, no. 3, pp. 180-195, Jul. 2018. https://doi.org/10.25103/jestr.113.25
  15. D. A. Reberts, and R. Boller, "ViSBARD Tutorial Examples; Magnetospheric Spacecraft Orbits," NASA GSFC, Cross-Platform Release Version, Aug. 2007.
  16. D. H. Youm and V. Kuraku, "Cost of Content Services to Hybrid Computing," Asia-pacific Journal of Convergent Research Interchange, HSST, ISSN : 2508-9080, vol.2, no.1, Mar. (2016), pp. 1-6, http://dx.doi.org/10.21742/APJCRI.2016.03.01.
  17. F. Mozer, R. Torbert, U. V. Fahleson, and C.G. Falthammar, "Electric Field Measurements in the Solar Wind, Bow Shock, Magnetosheath, Magnetopause, and Magnetosphere," Space Science Reviews 22, pp. 791-804, 1978. https://doi.org/10.1007/BF00212624
  18. J. Fourier, Fourier Transform [Internet]. Available: https://en.wikipedia.org/wiki/Fourier_transform