DOI QR코드

DOI QR Code

Electrolyte Temperature Dependence on the Properties of Plasma Anodized Oxide Films Formed on AZ91D Magnesium Alloy

  • 투고 : 2019.01.03
  • 심사 : 2019.04.21
  • 발행 : 2019.05.27

초록

The passivation of AZ91D Mg alloys through plasma anodization depends on several process parameters, such as power mode and electrolyte composition. In this work, we study the dependence of the thickness, composition, pore formation, surface roughness, and corrosion resistance of formed films on the electrolyte temperature at which anodization is performed. The higher the electrolyte temperature, the lower is the surface roughness, the smaller is the oxide thickness, and the better is the corrosion resistance. More specifically, as the electrolyte temperature increases from 10 to $50^{\circ}C$, the surface roughness (Ra) decreases from 0.7 to $0.15{\mu}m$ and the corrosion resistance increases from 3.5 to 9 in terms of rating number in a salt spray test. The temperature increase from 10 to $50^{\circ}C$ also causes an increase in magnesium content in the film from 25 to 63 wt% and a decrease in oxygen from 66 to 21 wt%, indicating dehydration of the film.

키워드

참고문헌

  1. S. H. Lee, H. Yashiro and S.-Z. Kure-Chu, J. Korean Inst. Surf. Eng., 50, 432 (2017). https://doi.org/10.5695/JKISE.2017.50.6.432
  2. S. H. Lee, H. Yashiro and S.-Z. Kure-Chu, Korean J. Mater. Res., 28, 544 (2018). https://doi.org/10.3740/MRSK.2018.28.10.544
  3. B. L. Mordike and T. Ebert, Mater. Sci. Eng., A, 302, 37 (2001). https://doi.org/10.1016/S0921-5093(00)01351-4
  4. G. Song, A. Atrens, D. Stjohn, J. Nairn and Y. Li, Corros. Sci., 39, 855 (1997). https://doi.org/10.1016/S0010-938X(96)00172-2
  5. Y. Ma, X. Nie, D. O. Northwood and H. Hu, Thin Solid Films, 494, 296 (2006). https://doi.org/10.1016/j.tsf.2005.08.156
  6. J. Gray and B. Luan, J. Alloys Compd., 336, 88 (2002). https://doi.org/10.1016/S0925-8388(01)01899-0
  7. P. B. Srinivasan, C. Blawert and W. Dietzel, Mater. Sci. Eng., A, 494, 401 (2008). https://doi.org/10.1016/j.msea.2008.04.031
  8. Y. Zhang, C. Yan, F. Wang, H. Lou and C. Cao, Surf. Coat. Technol., 161, 36 (2002). https://doi.org/10.1016/S0257-8972(02)00342-0
  9. H. Duan, K. Du, C. Yan and F. Wang, Electrochim. Acta, 51, 2898 (2006). https://doi.org/10.1016/j.electacta.2005.08.026
  10. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, Surf. Coat. Technol., 122, 73 (1999). https://doi.org/10.1016/S0257-8972(99)00441-7
  11. C. B. Wei, X. B. Tian, S. Q. Yang, X. B. Wang, R. K. Y. Fu and P. K. Chu, Surf. Coat. Technol., 201, 5021 (2007). https://doi.org/10.1016/j.surfcoat.2006.07.103
  12. B.-Y. Kim, D. Lee, Y.-N. Kim, M.-S. Jeon, W.-S. You and K.-Y. Kim, J. Korean Ceram. Soc., 46, 295 (2009). https://doi.org/10.4191/KCERS.2009.46.3.295
  13. B. H. Long, H. H. Wu, B. Y. Long, J. B. Wang, N. D. Wang, X. Y. Lu, Z. S. Jin and Y. Z. Bai, J. Phys. D: Appl. Phys., 38, 3491 (2005). https://doi.org/10.1088/0022-3727/38/18/025
  14. S. Moon and Y. Nam, Corros. Sci., 65, 494 (2012). https://doi.org/10.1016/j.corsci.2012.08.050
  15. E. Atar, C. Sarioglu, U. Demirler, W. Sabri Kayali and H. Cimenoglu, Scr. Mater., 48, 1331 (2003). https://doi.org/10.1016/S1359-6462(03)00019-8
  16. T. S. N. S. Narayanan, I. S. Park and M. H. Lee, Prog. Mater. Sci., 60, 1 (2014). https://doi.org/10.1016/j.pmatsci.2013.08.002
  17. D. Kwon and S. Moon, J. Korean Inst. Surf. Eng., 49, 46 (2016). https://doi.org/10.5695/JKISE.2016.49.1.46
  18. Y. Yan, Y. Han, D. Li, J. Huang and Q. Lian, Appl. Surf. Sci., 256, 6359 (2010). https://doi.org/10.1016/j.apsusc.2010.04.017