DOI QR코드

DOI QR Code

Flexible Hydrogen Sensor Using Ni-Zr Alloy Thin Film

  • Yun, Deok-Whan (Department of Advanced Materials Engineering, Kumoh National Institute of Technology) ;
  • Park, Sung Bum (Department of Advanced Materials Engineering, Kumoh National Institute of Technology) ;
  • Park, Yong-il (Department of Advanced Materials Engineering, Kumoh National Institute of Technology)
  • Received : 2019.04.24
  • Accepted : 2019.04.25
  • Published : 2019.05.27

Abstract

A triple-layered $PMMA/Ni_{64}Zr_{36}/PDMS$ hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the $Ni_{64}Zr_{36}$ alloy layer to give a high hydrogen-selectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the $Pd_{77}Ag_{23}$ sensor. Despite using low cost $Ni_{64}Zr_{36}$ alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.

Keywords

References

  1. S.-I. Yamaura, Y. Shimpo, H. Okouchi; M. Nishida and O. Kajita, Mater. Trans., 44, 1885 (2003). https://doi.org/10.2320/matertrans.44.1885
  2. L. A. Ruth, Mater. High Temp., 20, 7 (2003). https://doi.org/10.1179/mht.2003.002
  3. D. S. Newsome, Catal. Rev., 21, 275 (1980). https://doi.org/10.1080/03602458008067535
  4. S. E. Nam, S. H. Lee; K. H. Lee, J. Membr. Sci., 153, 163 (1999). https://doi.org/10.1016/S0376-7388(98)00262-2
  5. J. Li, R. Fan, H. Hu and C. Yao, Mater. Lett., 212, 211 (2018). https://doi.org/10.1016/j.matlet.2017.10.095
  6. W. L. Watkins and Y. Borensztein, Sens Actuators B Chem,, 273, 527 (2018). https://doi.org/10.1016/j.snb.2018.06.013
  7. B. A. McCool and Y. S. Lin, J. Mater. Sci., 36, 3221 (2001). https://doi.org/10.1023/A:1017938403725
  8. R. C. Hughes and W. K. Schubert, J. Appl. Phys., 71, 542 (1992). https://doi.org/10.1063/1.350646
  9. C. C. Brown and R. E. Buxbaum, Metall. Trans. A, 19, 1425 (1988). https://doi.org/10.1007/BF02674016
  10. S.-M. Kim, D. Chandra, W.-M. Chien, N. K. Pal, M. D. Dolan, A. Talekar, J. Lamb, S. N. Paglieri and T. B. Flanagan, Int. J. Hydrogen Energy, 37, 3904 (2012). https://doi.org/10.1016/j.ijhydene.2011.04.220
  11. S. Hara, N. Hatakeyama, N. Itoh, H. M. Kimura and A. Inoue, J. Membr. Sci., 211, 149 (2003). https://doi.org/10.1016/S0376-7388(02)00416-7
  12. S. Hara, K. Sakaki, N. Itoh, H.-M. Kimura, K. Asami and A. Inoue, J. Membr. Sci., 164, 289 (2000). https://doi.org/10.1016/S0376-7388(99)00192-1
  13. S. Hara, N. Hatakeyama, N. Itoh, H.-M. Kimura and A. Inoue, Desalination, 144, 115 (2002). https://doi.org/10.1016/S0011-9164(02)00298-9
  14. S.-I. Yamaura, Y. Shimpo, H. Okouchi, M. Nishida, O. Kajita and H. Kimura, A. Inoue, Mater. Trans., 44, 1885 (2003). https://doi.org/10.2320/matertrans.44.1885
  15. G. L. Holleck, J. Phys. Chem., 74, 503 (1970). https://doi.org/10.1021/j100698a005
  16. H. Katsuta, R. J. Farraro and R. B. McLellan, Acta Metall., 27, 1111 (1979). https://doi.org/10.1016/0001-6160(79)90128-7
  17. M. D. Dolan, S. Hara, N. C. Dave, K. Haraya, M. Ishitsuka, A. Y. Ilyushechkin, K. Kita, K. G. McLennan, L. D. Morpeth and M. Mukaida, Sep. Purif. Technol., 65, 298 (2009). https://doi.org/10.1016/j.seppur.2008.10.051
  18. S.-I. Yamaura, M. Sakurai, M. Hasegawa, K. Wakoh, Y. Simpo, M. Nishida, H. Kimura, E. Matsubara and A. Inoue, Acta Mater., 53, 3703 (2005). https://doi.org/10.1016/j.actamat.2005.04.023
  19. C. Lu and Z. Chen, Sens. Actuators, B, 140, 109 (2009). https://doi.org/10.1016/j.snb.2009.04.004
  20. J. Lee, D. H. Kim, S.-H. Hong and J. Y. Jho, Sens. Actuators, B, 160, 1494 (2011). https://doi.org/10.1016/j.snb.2011.08.001
  21. E. Sennik, Z. Colak, N. Kilinc, Z. Ziya Ozturk, Int. J. Hydrogen Energy, 35, 4420 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.100
  22. H. Katsuta, R. J. Farraro and R. B. McLellan, Acta Metall., 27, 1111 (1979). https://doi.org/10.1016/0001-6160(79)90128-7
  23. M. D. Dolan, N. Dave, L. Morpeth, R. Donelson, D. Liang, M. Kellam, S. Song, J. Membr. Sci., 326, 549 (2009). https://doi.org/10.1016/j.memsci.2008.10.030
  24. S. Balla, B. Vehovszky, A. Bardos and M. Kovalakova, J. Phys.: Condens. Matter, 144, 012012 (2009). https://doi.org/10.1088/1742-6596/144/1/012012