DOI QR코드

DOI QR Code

Enhancement of Electrical Conductivity in Silver Nanowire Network for Transparent Conducting Electrode using Copper Electrodeposition

구리 전기도금 방법을 이용한 은 나노와이어 투명전극의 전기전도도 향상

  • Ji, Hanna (Department of Materials Science and Engineering, Hanbat National University) ;
  • Jang, Jiseong (Department of Materials Science and Engineering, Hanbat National University) ;
  • Lee, Sangyeob (Department of Materials Science and Engineering, Hanbat National University) ;
  • Chung, Choong-Heui (Department of Materials Science and Engineering, Hanbat National University)
  • 지한나 (한밭대학교 공과대학 신소재공학과) ;
  • 장지성 (한밭대학교 공과대학 신소재공학과) ;
  • 이상엽 (한밭대학교 공과대학 신소재공학과) ;
  • 정중희 (한밭대학교 공과대학 신소재공학과)
  • Received : 2019.03.22
  • Accepted : 2019.04.22
  • Published : 2019.05.27

Abstract

Transparent conducting electrodes are essential components in various optoelectrical devices. Although indium tin oxide thin films have been widely used for transparent conducting electrodes, silver nanowire network is a promising alternative to indium tin oxide thin films owing to its lower processing cost and greater suitability for flexible device application. In order to widen the application of silver nanowire network, the electrical conductance has to be improved while maintaining high optical transparency. In this study, we report the enhancement of the electrical conductance of silver nanowire network transparent electrodes by copper electrodeposition on the silver nanowire networks. The electrodeposited copper lowered the sheet resistance of the silver nanowire networks from $21.9{\Omega}{\square}$ to $12.6{\Omega}{\square}$. We perform detailed X-ray diffraction analysis revealing the effect of the amount of electrodeposited copper-shell on the sheet resistance of the core-shell(silver/copper) nanowire network transparent electrodes. From the relationship between the cross-sectional area of the copper-shell and the sheet resistance of the transparent electrodes, we deduce the electrical resistivity of electrodeposited copper to be approximately 4.5 times that of copper bulk.

Keywords

References

  1. R. G. Gordon, MRS Bull., 25, 52 (2000). https://doi.org/10.1557/mrs2000.151
  2. T. Minami, Semicond. Sci. Technol., 20, S35 (2005). https://doi.org/10.1088/0268-1242/20/4/004
  3. T. Minami, Thin Solid Films, 516, 5822 (2008). https://doi.org/10.1016/j.tsf.2007.10.063
  4. A. Kumar and C. Zhou, ACS Nano, 4, 11 (2010). https://doi.org/10.1021/nn901903b
  5. B. C. Tung, L. -M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner and Y. Yang, Nano Lett., 9, 1949 (2009). https://doi.org/10.1021/nl9001525
  6. S. Lee, J. S. Lee, J. Jang, K. -H. Hong, D. -K. Lee, S. Song, K. Kim, Y. -J. Eo, J. Gwak and C. -H. Chung, Nano Energy, 53, 675 (2018). https://doi.org/10.1016/j.nanoen.2018.09.027
  7. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen and P. Peumans, ACS Nano, 4, 43 (2010). https://doi.org/10.1021/nn900728d
  8. S. Pang, Y. Hernandez, X, Feng and K. Mullen, Adv. Mater., 23, 2779 (2011). https://doi.org/10.1002/adma.201100304
  9. S. Lee, J. Jang, K. S. Cho, Y. -J. Oh, K. -H, Hong, S. Song, K. Kim, Y. -J. Eo, J. H. Yun, J. Gwak and C. - H. Chung, Sol. Energy, 180, 519 (2019). https://doi.org/10.1016/j.solener.2019.01.059
  10. A. Khan, S. Lee,T. Jang, Z. Xiong, C. Zhang, J. Tang, L. J. Guo and W. -D Li, Small, 12, 3021 (2016). https://doi.org/10.1002/smll.201600309
  11. D. Azulai, T. Belenkova, H. Gilon, Z. Barkay and G. Markovich, Nano Lett., 9, 4246 (2009). https://doi.org/10.1021/nl902458j
  12. Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu and Q. Pei, Adv. Mater., 23, 664 (2011). https://doi.org/10.1002/adma.201003398
  13. J. Jang, D. -Y. Park, K. -H. Hong, S. Song, K. Kim, Y. -J. Eo, J. Gwak, J. H. Yun and C. -H, Chung, Nanosci. Nanotechnol. Lett., 10, 528 (2018). https://doi.org/10.1166/nnl.2018.2671
  14. C. -C. Chen, L. Dou, R. Zhu, C. -H. Chung, T. -B Song, Y. B. Zheng, S. Hawks, G. Li, P. S. Weiss and Y. Yang, ACS Nano, 6, 7185 (2012). https://doi.org/10.1021/nn3029327
  15. D. Langley, G. Giuti, C. Mayousse, C. Celle, D. Bellet and J. -P. Simonato, Nanotechnology, 24, 452001 (2013). https://doi.org/10.1088/0957-4484/24/45/452001
  16. J. Jang, J. S. Lee, K. -H. Hong, D. -K. Lee, S. Song, K. Kim, Y. -J. Eo, J. H. Yun and C. -H. Chung, Sol. Energy Mater. Sol. Cells, 170, 60, (2017). https://doi.org/10.1016/j.solmat.2017.05.051
  17. H. J. Eom, J. M. Lee, P. Aekachan, A. Morteza, J. H. Jeong, E. S. Lee, J. Y. Lee and I. K. Park, Small, 20, 4171 (2014).
  18. S. C. Lin, S. Y. Chen, Y. T. Chen and S. Y. Cheng, J. Alloys Compd., 449, 232, (2008). https://doi.org/10.1016/j.jallcom.2006.01.147
  19. R. Yuksel, S.Coskun, Y. E. Kalay and H. E. Unalan, J. Power Sources, 328, 167 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.008
  20. D. Bellet, M. Lagrange, T. Sannicolo, S. Aghazadehchors, V. H. Nguyen, D. P. Lagnley, D. Munozrojas, C. Jimenez, Y. Brechet and N. D. Nguyen, Materials, 10, 570 (2017). https://doi.org/10.3390/ma10060570
  21. B. D. Cullity and S. R. Stock, Elements of X-ray diffraction, 3rd ed, p.158, Prentice-Hall, Englewood Cliffs, NJ (2001).
  22. A. Bid, A. Bora and A. K. Raychaudhuri, Phys. Rev. B, 74, 035426, (2006). https://doi.org/10.1103/PhysRevB.74.035426