DOI QR코드

DOI QR Code

The Effect of Nb-doped TiO2 Coating for Improving Stability of NiCrAl Alloy Foam

NiCrAl 합금 폼의 안정성 향상을 위해 코팅된 Nb-doped TiO2의 효과

  • Jo, Hyun-Gi (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Shin, Dong-Yo (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 조현기 (서울과학기술대학교 신소재공학과) ;
  • 신동요 (서울과학기술대학교 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2018.02.22
  • Accepted : 2019.05.11
  • Published : 2019.05.27

Abstract

Nb-doped $TiO_2$(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ${\sim}25.3^{\circ}$, corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).

Keywords

References

  1. E. Simek, M. Karakaya, A. K. Avci and Z. I. Onsan, Int. J. Hydrogen Energy, 38, 870 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.078
  2. Y. Matsumura and T. Nakamori, Appl. Catal., A, 258, 107 (2004). https://doi.org/10.1016/j.apcata.2003.08.009
  3. G. Jone, J. G. Jakobsen, S. S. Shim, J. Kleis, M. P. Andersson, J. Rossmeisl, F. A.-Pedersen, T. Bligaard, Stig. Helveg, B. Hinnemann, J. R. R.-Nielsen, I. Chorkendorff, J. Sehested and J. K. Norskov, J. Catal., 259, 147 (2008). https://doi.org/10.1016/j.jcat.2008.08.003
  4. C.-J. Liu, J. Ye, J. Jiang and Y. Pan, Chem. Cat. Chem., 3, 529 (2011).
  5. N. Salhi, A. Boulahouache, C. Petit, A. Kiennemann and C. Rabia, Int. J. Hydrogen Energy, 36, 11439 (2011).
  6. D.-Y. Sin, E.-H. Lee, M.-H. Park and H.-J. Ahn, Korean J. Mater. Res., 26, 393 (2016). https://doi.org/10.3740/MRSK.2016.26.7.393
  7. S. Katheria, G. Deo and D. Kunzru, Energy Fuels, 31, 3143 (2017). https://doi.org/10.1021/acs.energyfuels.6b03423
  8. G. Sreedhar and V. S. Raja, Corros. Sci., 52, 2592 (2010). https://doi.org/10.1016/j.corsci.2010.04.007
  9. Y. Hwangbo, H. R. Lim and Y.-I. Lee, Korean J. Mater. Res., 27, 270 (2017). https://doi.org/10.3740/MRSK.2017.27.5.270
  10. Q. Liu, Z. Zhang, F. Gu, X. Wang, X. Lu, H. Li, G. Xu and F. Su, J. Catal., 337, 221 (2016). https://doi.org/10.1016/j.jcat.2016.01.023
  11. L. Jiang, L. Sun, D. Yang, J. Zhang, Y.-J. Li, K. Zou and W.-Q. Deng, ACS Appl. Mater. Interfaces, 9, 9576 (2017). https://doi.org/10.1021/acsami.6b14147
  12. B.-R. Koo, D.-H. Oh and H.-J. Ahn, Appl. Surf. Sci., 432, 27 (2018). https://doi.org/10.1016/j.apsusc.2017.04.238
  13. M. Hirano and K. Matsushima, J. Am. Ceram. Soc., 89, 110 (2006). https://doi.org/10.1111/j.1551-2916.2005.00648.x
  14. A. Mattsson, M. Leideborg, K. Larsson, G. Westin and L. Osterlund, J. Phys. Chem. B, 110, 1210 (2006). https://doi.org/10.1021/jp055656z
  15. Y.-J. Lee, B.-R. Koo, S.-H. Baek, M.-H. Park and H.-J. Ahn, Korean J. Mater. Res., 25, 391 (2015). https://doi.org/10.3740/MRSK.2015.25.8.391
  16. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson and R. S. C. Smart, Appl. Surf. Sci., 257, 2717 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051
  17. M. Kwoka, V. Galstyan, E. Comini and J. Szuber, J. Nanomater., 7, 456 (2017). https://doi.org/10.3390/nano7120456
  18. A. N. Manour and C. A. Melendres, J. Electrochem. Soc., 142, 1961 (1995). https://doi.org/10.1149/1.2044223
  19. A.V. Manole, M. Dobromir, M. Girtan, R. Mallet, G. Rusu and D. Luca, Ceram. Int., 39, 4771 (2013). https://doi.org/10.1016/j.ceramint.2012.11.066
  20. Y. Wang, B. M. Smarsly and Djerdj, Chem. Mater., 22, 6624 (2010). https://doi.org/10.1021/cm1020977
  21. H. Su, Y.-T. Huang, Y.-H. Chang, P. Zhai, N. Y. Hau, P. C. H. Cheung, W.-T. Yeh, T.-C. Wei and S.-P. Feng, Electrochim. Acta, 182. 230 (2015). https://doi.org/10.1016/j.electacta.2015.09.072
  22. D.-Y. Shin, J.-W. Bae, B.-R. Koo and H.-J. Ahn, Kor. J. Mater. Res., 27, 392 (2017). https://doi.org/10.3740/MRSK.2017.27.7.392
  23. Y.-G. Lee, D.-Y. Shin and H.-J. Ahn, Korean J. Mater. Res., 28 324 (2018). https://doi.org/10.3740/MRSK.2018.28.6.324
  24. B. X. Lu, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Juang, F. Xu and S. Juang, Adv. Funct. Mater., 20, 509 (2010). https://doi.org/10.1002/adfm.200901292