DOI QR코드

DOI QR Code

Adhesion and Lifetime Extension Properties of Electrical Conductive Paint Stored under of Nitrogen Atmosphere

질소환경에서 보관된 전기전도성 페인트의 접착 및 수명연장 특성

  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Baek, Yeong-Min (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Park, Ha-Seung (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 신평수 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소) ;
  • 김종현 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소) ;
  • 백영민 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소) ;
  • 박하승 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소) ;
  • 박종만 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소)
  • Received : 2018.12.17
  • Accepted : 2019.03.06
  • Published : 2019.03.31

Abstract

The change of three different reagents for electrical conductive paint using aircraft coating with elapsing time of exposure to different condition was investigated. Three different reagents were poured into the vial bottles, stored in air condition and room temperature and observed with elapsing days. In addition, adhesion property of paint was tried using cross cut tape test after storage of $N_2$ atmosphere. The weight of each different reagent was measured along with elapsing time. To confirm the change of chemical component with exposure of air atmosphere, FT-IR was performed. The weight of part A and Part B decreased slightly whereas the weight of part C decreased rapidly and the precipitation was remained. The part B was cured after exposure of $N_2$ atmosphere and the 2250 cm-1 from FT-IR peak decreased slowly at the same time. It was considered that the water contained in air accelerated the reaction of -NCO functional groups and it caused the curing whereas $N_2$ atmosphere not contained water and it resulted in the retardancy of curing.

이 논문에서는 항공용 전도성 페인트에 들어가는 3가지 첨가제가 공기 및 질소 조건에 노출 되었을 때의 변화를 관찰하였다. 3가지 첨가제를 바이알병에 담았고 공기조건 및 질소조건에 각 일수에 따라 보관하였다. 각 일수에 보관하면서 3가지 첨가제 질량의 변화를 파악하였다. 또한, 각기 다른 대기조건에서의 화학적 변화를 보기 위해 적외선 분광기가 사용되었다. 더 나아가 질소조건 보관 후 페인트의 성능을 확인하기 위해 도장 후 도장부착력 실험을 하였다. 시약 A와 시약 B의 경우는 질소보관 후 질량의 감소 정도가 더 작은데 반해 시약 C의 경우는 질소보관 후 질량 감소 정도가 더 큰 것을 확인하였다. 특히, 시약 B의 경우는 공기 노출 시 경화가 되는 현상을 발견하였고 적외선 분광분석 시 아이소시아네이트기 피크인 $2250cm^{-1}$의 크기가 감소함을 확인하였는데, 질소조건에서 경화정도가 늦어짐을 확인하였다. 이는, 공기 중에 있는 수분이 아이소시아네이트기의 반응을 촉진시키는데, 질소조건으로 치환하면서 반응을 지연시켰다.

Keywords

Table 1. The reagents for electrical conductive coating

JGMHB1_2019_v20n1_9_f0001.png 이미지

JGMHB1_2019_v20n1_9_f0002.png 이미지

Figure 1. Schematic plot of N2 condition machine.

JGMHB1_2019_v20n1_9_f0003.png 이미지

Figure 2. Schematic modeling of electrical conductive paint.

JGMHB1_2019_v20n1_9_f0004.png 이미지

Figure 4. FT-IR of part B under different conditions: (a) 4000-500cm-1 and (b) 2500-2000cm-1.

JGMHB1_2019_v20n1_9_f0005.png 이미지

Figure 3. Photos of paint reagents storage under air condition:(a) 0 days and (b) 10 days.

JGMHB1_2019_v20n1_9_f0006.png 이미지

Figure 5. Chemical reactions of isocyanate with: (a) alcohol and (b) water.

JGMHB1_2019_v20n1_9_f0007.png 이미지

Figure 6. Weight changes at different atmospheres: (a) part A, (b) part B and (c) part C.

JGMHB1_2019_v20n1_9_f0008.png 이미지

Figure 7. Paint surfaces after cross hatched test: (a) neat paint and (b) N2 atmosphere.

Table 2. Weight changes in air and N2 conditions

JGMHB1_2019_v20n1_9_t0001.png 이미지

References

  1. M. Gigliotti, M. C. Lafarie-Frenot, Y. Lin and A. Pugliese, Composite Structures, 127, 436 (2015). https://doi.org/10.1016/j.compstruct.2015.01.023
  2. Y. Lin, M. Gigliotti, M. C. Lafarie-Frenot, J. Bai, D. Marchand and D. Mellier, Composites: Part B, 76, 31 (2015). https://doi.org/10.1016/j.compositesb.2015.02.015
  3. A. Ai-Lami, P. Hilmer and M. Sinapius, Aerospace Science and Technology, 79, 669 (2018). https://doi.org/10.1016/j.ast.2018.06.020
  4. Y. Lu, W. Li, S. Li, X. Li, and T. Zhu, Polymers, 7, 2595 (2015). https://doi.org/10.3390/polym7121537
  5. B. G. Kumar, R. P. Singh, and T. Nakamura, Journal of Composite Materials, 36, 2713 (2002). https://doi.org/10.1177/002199802761675511
  6. G. Sweers, B. Birch, J. Gokcen, Aero, 4, 19 (2012). https://doi.org/10.3390/aerospace4020019
  7. A. Katunnin, K. Krukiewicz, A. Herega, G. Catalanotti, Advanced in Materials Science, 16, 32 (2016). https://doi.org/10.1515/adms-2016-0007
  8. A. Katunin, K. Krukiewicz, R. Turczyn, P. Sul, A. Lasica and M. Bilewicz, Composite Structures, 159, 773 (2017). https://doi.org/10.1016/j.compstruct.2016.10.028
  9. J. Gou, Y. Tang, F. Liang, Z. Zhan, D. Firsich and J. Fielding, Composites: Part B, 41, 192 (2010).
  10. J. H. Han, H. Zhang, M. J. Chen, D. Wang, Q. Liu, Q. L. Wu and Z. Zhang, Carbon, 94, 101 (2015). https://doi.org/10.1016/j.carbon.2015.06.026
  11. D. Petersen, R. Rolfes, and R. Zimmermann, Aerospace Science and Technology, 5, 135 (2001). https://doi.org/10.1016/S1270-9638(00)01089-0
  12. Z. Chen, W. Yang, H. Yin and S. Yuan, Chinese Journal of Chemical Engineering, 25, 1435 (2017). https://doi.org/10.1016/j.cjche.2017.03.012
  13. E. Delebecq, J. P. Pascault, B. Boutevin and F. Ganachaud, Chemical Reviews, 113, 80 (2013). https://doi.org/10.1021/cr300195n
  14. K. A. Houton, G. M. Burslem, and A. J. Wilson, Chemical Science, 6, 2382 (2015). https://doi.org/10.1039/C4SC03804E