DOI QR코드

DOI QR Code

Transport and management of diffuse pollutants using low impact development technologies applied to highly urbanized land uses

고도화 도시지역에 적용된 LID 기법의 비점오염물질 관리 및 이동

  • Geronimo, F.K.F. (Dept. of Civil & Environ. Engineering, Kongju National University) ;
  • Choi, H.S. (Dept. of Civil & Environ. Engineering, Kongju National University) ;
  • Kim, L.H. (Dept. of Civil & Environ. Engineering, Kongju National University)
  • ;
  • 최혜선 (공주대학교 건설환경공학과) ;
  • 김이형 (공주대학교 건설환경공학과)
  • Received : 2019.05.03
  • Accepted : 2019.05.21
  • Published : 2019.05.31

Abstract

This study was conducted to understand factors affecting TSS and heavy metals transport on the road, parking lot and roof. During storm events, heavy metals, which were mostly attached to TSS, were also transported when TSS was washed off in the road, parking lot and roof. This finding may be supported by the significant correlations between TSS load and total and soluble heavy metals load including Cr, Fe, Cu, and Pb (Pearson r value: 0.52 to 0.73; probability p value<0.01). Generation and transport of TSS and heavy metals were greater in the road and parking lot compared to the roof due to vehicular activities, slope and greater catchment areas of these sites. It was found that TSS transport during peak flows of storm events ranges from 65% to 75% implying that by controlling peak flows, TSS transportation to nearby water bodies may be decreased. Depending on the target TSS and heavy metal reduction, sizing of low impact development (LID) technologies and green infrastructures (GI) such as infiltration trench, tree box filter, and rain garden may be calculated. Future researchers were recommended to assess the limitations of the systems and determine the design considerations for these types of facilities.

본 연구는 도로, 주차장 및 지붕에서 발생된 TSS와 중금속의 거동을 분석하기 위해 수행되었다. 강우시 도로, 주차장, 지붕에서 발생되는 중금속은 입자상 물질(TSS)에 부착되어 이동된다. 이는 TSS 부하량과 Cr, Fe, Cu 및 Pb의 입자상 중금속 및 용존성 중금속의 부하량의 상관관계로 판단 가능하다(r =0.52~0.73, p <0.01). 일반적으로 도로 및 주차장에서 발생된 TSS 및 중금속은 지붕에 비해 더 높은 것으로 분석되었는데, 이는 차량에 의해 중금속이 많이 발생하며, 집수면적 또한 도로 및 주차장이 넓기 때문으로 보여진다. 첨두유출발생시까지 TSS 부하량의 65~75%가 유출되는 것으로 나타났으며, 이는 인근 수계로 유출되는 TSS를 제거하기 위해서는 첨두유출을 제어하는 것이 가장 효과적인 것을 의미한다. 또한 비용경제적인 LID 시설의 규모를 산정하기 위해 시설의 적정 크기(시설의 표면적/배수구역 면적)에 따른 TSS와 중금속 제거율을 평가하였다. 본 연구는 LID 시설의 설계시 참고 가능한 기초데이타로 중요한 의미가 있는 것으로 사료된다.

Keywords

HKSJBV_2019_v21n2_173_f0001.png 이미지

Fig. 1. Schematic of the LID technologies to control TSS and heavy metals Results and Discussion.

HKSJBV_2019_v21n2_173_f0002.png 이미지

Fig. 2. Event mean concentrations before the LID and after the LID.

HKSJBV_2019_v21n2_173_f0003.png 이미지

Table 3. Correlation analysis of inflow pollutant loads

HKSJBV_2019_v21n2_173_f0004.png 이미지

Fig. 3. Relationship of a. peak flow rate, b. runoff volume and sediment load with rainfall depth.

HKSJBV_2019_v21n2_173_f0005.png 이미지

Fig. 4. Comparison of TSS load accumulation during storm events.

HKSJBV_2019_v21n2_173_f0006.png 이미지

Fig. 5. Relationship of accumulated pollutant load with accumulated runoff volume at selected points of storm events,

HKSJBV_2019_v21n2_173_f0007.png 이미지

Fig. 6. Exponential relationship between pollutant removal efficiency and LID surface area to catchment area.

Table 1. Catchment and design characteristics of LID technologies

HKSJBV_2019_v21n2_173_t0001.png 이미지

Table 2. Characteristics of monitored storm events

HKSJBV_2019_v21n2_173_t0002.png 이미지

Table 3. Correlation analysis of inflow pollutant loads

HKSJBV_2019_v21n2_173_t0003.png 이미지

References

  1. Barrett, M. E. (2005). Performance comparison of structural stormwater best management practices. Water Environment Research, 78-86. DOI: 10.2175/106143005X41654
  2. Clary, J., Quigley, M., Earles, A., Leisenring, M., Strecker, E., & Jones, J. (2009). Integration of Low Impact Development Studies into the International Stormwater BMP Database. Proceedings of World Environmental and Water Resources Congress, 1-10. DOI: 10.1061/41036(342)124
  3. Coffman, L. (2000). Low-impact development design strategies, an integrated design approach, EPA 841-B-00-003. Department of Environmental Resources, Programs and Planning Division, Prince George's County, Maryland.
  4. Flores, P. E. D., Maniquiz-Redillas, M. C., Geronimo, F. K. F., Alihan, J. C. P., & Kim, L. H. (2016). Transport of nonpoint source pollutants and stormwater runoff in a hybrid rain garden system. Journal of Wetlands Research, 18(4), 481-487. DOI: 10.17663/JWR.2016.18.4.481
  5. Geronimo, F. K. F., Maniquiz-Redillas, M. C. & Kim, L. H. (2013). Treatment of parking lot runoff by a tree box filter. Desalination and Water Treatment 51,4044-4049. DOI: 10.1080/19443994.2013.781099
  6. Gonzalez-Duque. J. A & Panagopoulos, T. (2013). Evaluation of the urban green infrastructure using landscape modules, gis and a population survey: linking environmental with social aspects in studying and managing urban forests. Journal of Spatial and Organizational Dynamics 1-2, 82-95.
  7. Houdeshel, C. D., Pomeroy, C.A., Hair, L. & Moeller, J. (2011). Cost estimating tools for low-impact development best management practices: Challenges, Limitations and Implications. Journal of Irrigation and Drainage 137-3, 183-189. DOI: 10.1061/(ASCE)IR.1943-4774.0000179
  8. Huang, J. , Ho, M. & Du, P. (2011). Assessment of temporal and spatial variation of coastal water quality and source identification along Macau peninsula. Stochastic Environmental Research and Risk Assessment25-3, 353-361. DOI: 10.1007/s00477-010-0373-4
  9. Lafortezza, R., Davies, C., Sanesi, G. & Konijnendijk, C. C. (2013). Green Infrastructure as a tool to support spatial planning in European urban regions. iForest-Biogeosciences and Forestry 6-1, 102. DOI: 10.3832/ifor0723-006
  10. Maniquiz, M. C., Lee, S., Lee, E., & Kim, L. H. (2009). Development of statistical linear regression model for metals from transportation land uses. Water Science and Technology, 59(12), 2495-2501. DOI: 10.2166/wst.2009.247
  11. Maniquiz, M. C., Lee, S. Y. & Kim, L. H. (2010a). Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables. Journal of Environmental Sciences 229, 946-952. DOI: 10.1016/S1001-0742(09)60203-5
  12. Maniquiz, M. C., Lee, S. Y. & Kim, L. H. (2010b). Long term monitoring of infiltration trench for nonpoint source control. Water Air Soil Pollution 212, 13-26. DOI: 10.1007/s11270-009-0318-z
  13. Maniquiz, M. C., Lee, S. Y. & Kim, L. H. (2016). Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environmental Technology 37-18, 2265-2272. DOI: 10.1080/09593330.2016.1147610
  14. Mercado, J. M. R., & Geronimo, F. K. F. (2012). Characteristics of stormwater runoff from urbanized areas. Journal of Wetlands Research, 14(2), 159-168. https://doi.org/10.17663/JWR.2012.14.2.159
  15. Peraza-Castro, M., Sauvage, S., Sanchez-Perez, J. M. & Ruiz-Romera, E. (2016). Effect of flood events on transport of suspended sediments, organic matter and particulate metals in a forest watershed in the Basque Country (Northern Spain). Science of the Total Environment 569-570, 784-797. DOI: 10.1016/j.scitotenv.2016.06.203.
  16. Scholes, L. ,Revitt, D. M. & Ellis, J. B. (2008). A systematic approach for the comparative assessment of stormwater pollutant removal potentials. Journal of Environmental Management 88-3, 467-478. DOI: 10.1016/j.jenvman.2007.03.003
  17. Shajib, M. T. I., Hansen, H. C. B., Liang, T., & Holm, P. E. (2019). Metals in surface specific urban runoff in Beijing. Environmental Pollution, 248, 584-598. doi: 10.1016/j.envpol.2019.02.039
  18. Taylor, K.G. & Owens, P. N. (2009). Sediments in urban river basins: a review of sediment- contaminant dynamics in an environmental system conditioned by human activities. Journal of Soils and Sediments 9, 281-303. DOI: 10.1007/s11368-009-0103-z
  19. Vogel, J.R. & Moore, T. L. (2016). Urban Stormwater Characterization, Control, and Treatment. Water Environment Research, 1918-1950. DOI: 10.2175/106143016X14696400495938.