DOI QR코드

DOI QR Code

Thermomechanical Coupled Analysis of Carbon/phenolic Composite Structures in Reentry Environments

재진입 환경의 탄소/페놀릭 복합재 구조물의 열기계적 연계 해석

  • Son, Myeong Jin (Department of Aerospace Engineering, Chonbuk National University) ;
  • Shin, Eui Sup (Department of Aerospace Engineering, Chonbuk National University)
  • Received : 2019.03.26
  • Accepted : 2019.05.27
  • Published : 2019.06.01

Abstract

In this paper, thermomechanical coupled analysis of carbon/phenolic composites structures in reentry environment was performed. The interface of thermomechanical coupled analysis was constructed using commercial software. The governing equations of temperature and displacement fields were considered to simulate change of physical behavior due to pyrolysis and ablation effects. The results of thermomechanical coupled analysis were compared with the results of ablation test using arc-heated wind tunnel. Also, the structural stability of reentry capsule was analyzed using the analysis interface. The excellent ablation characteristics and thermal protection effects of the carbon/phenolic composites were confirmed and the constructed analysis interface can be effectively used to perform thermal protection system design.

본 논문에서는 재진입 환경에 노출된 탄소/페놀릭 복합재 구조물에 대한 열기계적 연계 해석을 수행하였다. 열기계적 연계를 위한 해석 인터페이스를 상용 소프트웨어를 이용하여 구축하였다. 열분해 및 삭마에 따른 물리적 거동 변화를 모사하기 위해 온도장과 변위장의 주요 지배방정식을 고려하였다. 구축한 해석 인터페이스를 이용하여 탄소/페놀릭 복합재 구조물에 대한 열기계적 연계해석을 수행하였으며 이를 아크 가열 풍동을 이용한 삭마 실험 결과와 비교하였다. 또한 탄소/페놀릭 복합재를 적용한 재진입 캡슐에 대한 열기계적 연계 해석을 수행하였다. 이를 통해 탄소/페놀릭 복합재의 삭마 특성 및 열 보호 효과와 구축한 해석 인터페이스의 활용성을 확인하였다.

Keywords

References

  1. Mathews, R. N., and Shafeeque, A. P., "Hypersonic flow analysis on an atmospheric re-entry module," International Journal of Engineering Research and General Science, Vol. 3, Issue 5, 2015, pp. 991-1001.
  2. Laub, B., and Venkatapathy, E., "Thermal protection system technology and facility needs for demanding future planetary missions," Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, Vol. 544, 2004, pp. 239-247.
  3. Nataili, M., Kenny, J. M., and Torre, L., "Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review," Progress in Materials Science, Vol. 84, 2016, pp. 192-275. https://doi.org/10.1016/j.pmatsci.2016.08.003
  4. Johnson, S. M., "Thermal protection materials: development, characterization and evaluation," Proceeding of the HiTemp Conference, 2012.
  5. Anon., "User's manual, Aerotherm charring material thermal response and ablation program," Acurex Corporation, Aerotherm Division, 1961.
  6. Chen, Y. K., and Milos, F. S., "Fully implicit ablation and thermal analysis program (FIAT)," Journal of Spacecraft and Rockets, Vol. 36, No. 3, 1999, pp. 475-483. https://doi.org/10.2514/2.3469
  7. Pinaud, G., Bouily, J. M., and Barcena, J., "HYDRA: Macroscopic modeling of hybrid ablative thermal protection system," Proceedings of the 5th International Conference on Porous Media and its Applications in Science and Engineering, 2014.
  8. Empey, D. M., Gorbunov, S., Skokova, K. A., Agrawal, P., Swanson, G. T., Prabhu, D. K., Mangini, N., Perterson, K. H., Winter, M., and Venkatapathy, E., "Small probe reentry investigation for TPS engineering (SPRITE)," Proceeding of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012.
  9. Sutton, K., "An experimental study of a carbon/phenolic ablation material," NASA TN-D-5930, 1970.
  10. Paglia, L., Tirilloa, J., Marra, F., Bartuli, C., Simone, A., Valente, T., and Pulci, G., "Carbon-phenolic ablative materials for re-entry space vehicles_plasma wind tunnel test and finite element modeling," Materials and Design, Vol. 90, 2016, pp. 1170-1180. https://doi.org/10.1016/j.matdes.2015.11.066
  11. Choi, H. W., Roh, K. W., Cheon, J. H., and Shin, E. S., "Quantitative Analysis for Surface Recession of Ablative Materials Using High-speed Camera and 3D Profilometer," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 46, No. 9, 2018, pp. 735-741. https://doi.org/10.5139/JKSAS.2018.46.9.735
  12. Lim, S., Cheon, J. H., Son, M. J., and Shin, E. S., "Quantitative analysis of surface recession on carbon-based ablators using a high-resolution non-contact profilometer," Materials and Design, Vol. 149, 2018, pp. 73-80. https://doi.org/10.1016/j.matdes.2018.03.056