DOI QR코드

DOI QR Code

Characteristics and Predictions of the Cavitation Inception in a Turbopump Inducer

터보펌프 인듀서에서 캐비테이션 시작점의 특성 및 예측에 관한 연구

  • Received : 2018.07.12
  • Accepted : 2018.11.17
  • Published : 2019.02.01

Abstract

The cavitation of a turbopump inducer develops from the inception to a critical point, and encounters breakdown finally. In this study, we evaluated the characteristics and predictions of cavitation inception for the turbopump inducer using empirical equations. The empirical equation for the elliptical plate predicted the generation of cavitation inception of the turbopump inducer relatively well. However, in case of the marine propeller, it showed a considerable difference owing to the Reynolds number of the operating point. The cavitation inception occurred earlier as the number of blades increased. However, the solidity had no major impact on the cavitation inception because the cavitation occurred locally at the tip of the leading edge.

터보펌프 인듀서에서 발생하는 캐비테이션은 시작점부터 점차 발달하여 임계점, 그리고 급격한 양정 하락으로 이어지는 붕괴점의 과정으로 진행된다. 본 연구에서는 터보펌프 인듀서에서 발생하는 캐비테이션 시작점에 대한 특성과 경험식을 사용한 예측을 평가해 보았다. 타원 평판의 캐비테이션 시작점 경험식은 터보펌프 인듀서의 시작점도 비교적 잘 예측하는 것으로 나타났다. 하지만, 선박용 프로펠러에서 이용되는 경험식의 경우 터보펌프 인듀서의 결과와 큰 차이를 보였다. 터보펌프 인듀서의 캐비테이션 시작점은 날개 수가 증가할수록 빨라졌지만, 현절비와는 무관한 것으로 나타났다.

Keywords

References

  1. Hong, S.S., Park, B., Kwak H., Kim, D.J., Lee, H., and Kim, J., "Full-Speed Suction Performance Test of a Turbopump for a 75 Ton Class Rocket Engine," Proceeding of the 2013 KSPE Conference, pp. 95-98, 2013.
  2. Lee, G.M., Kang, S.H., and Lee, K.H., "Cavitation Test of a High Pressure Turbopump," The KSFM Journal of Fluid Machinery, Vol. 7, No. 4, pp. 16-23, 2004. https://doi.org/10.5293/KFMA.2004.7.4.016
  3. Jung, K.N., Park, J.H., Kim, Y,K., and Kim, H.C., "A Study of NPSH required Performance Improvement for a Centrifugal Vertical Pump," Proceeding of the 2009 KSME Conference, pp. 126-131, 2009.
  4. Kang, T.J., and Park, W.G., "Cavitating Flow Analysis of 2-D Blade," Proceeding of the 2012 KSCFE Conference, pp. 54-57, 2012.
  5. Arakeri, V.H., and Acosta, A.J., “Cavitation inception on axisymmetric bodies at supercritical Reynolds number,” Journal of ship research, Vol. 20, No. 1, pp. 40-50, 1976. https://doi.org/10.5957/jsr.1976.20.1.40
  6. Amromin, E.L., "Scaling effect of cavitation inception on a 2D eppler hydrofoil," Journal of fluid engineering, Vol. 124, pp. 186-193, 2008. https://doi.org/10.1115/1.1427689
  7. Hsiao, C.T. and Chahine, G.L. "Scaling of tip vortex cavitation inception for a marine open propeller," 27th Symposium on naval hydrodynamics, 2008.
  8. Lee, C.S., Han, J.M., Kim, J.H., and Ahn, B.K., “Propeller Tip Vortex Cavitation Control Using Water Injection,” Journal of the Society of Naval Architects of Korea, Vol. 47, No. 6, pp. 770-775, 2010. https://doi.org/10.3744/SNAK.2010.47.6.770
  9. Lee, P.H., Ahn, B.K., Lee, C.S., and Lee, J.H., “An Experimental Study on Noise Characteristics of Propeller Cavitation Inception,” Journal of the Society of Naval Architects of Korea, Vol. 48, No. 1, pp. 1-7, 2011. https://doi.org/10.3744/SNAK.2011.48.1.1
  10. Park, S.I., Lee, S.J., You, G.S., and Suh, J.C., “Vortex Cavitation Inception Delay by Attaching a Twisted thread,” Journal of the Society of Naval Architects of Korea, Vol. 51, No. 3, pp. 259-264, 2014. https://doi.org/10.3744/SNAK.2014.51.3.259
  11. J. Hundemer, and M. Abdel-Maksoud, "Prediction of tip vortex cavitation inception on marine propellers at an early design stage," 7th International symposium on cavitation, CAV2009-143, 2009.
  12. Brennen, C.E., Hydrodynamics of pumps, Oxford university press, p. 288, 1994.
  13. McCormick, B.W., "On cavitation produced by a vortex trailing from a lifting surface," Journal of basic engineering, pp. 369-379, 1962.
  14. Spreiter, J.R. and Sacks, A.H., "The rolling up of the trailing vortex sheet and its effect on the downwash behind wings," Journal of aeronautical science, Vol. 18, No. 1, pp. 21-32, 1951. https://doi.org/10.2514/8.1830