DOI QR코드

DOI QR Code

Thermodynamic and Physical Properties of (NH4)2MnCl4·2H2O by Nuclear Magnetic Resonance Relaxation Times

  • 투고 : 2019.05.23
  • 심사 : 2019.05.31
  • 발행 : 2019.06.20

초록

The phase transition temperatures and thermodynamic properties of $(NH_4)_2MnCl_4{\cdot}2H_2O$ grown by the slow evaporation method were studied using differential scanning calorimetry and thermogravimetric analysis. A structural phase transition occurred at temperature $T_{C1}$ (=264 K), whereas the changes at $T_{C2}$ (=460 K) and $T_{C3}$ (=475 K) seemed to be chemical changes caused by thermal decomposition. In addition, the chemical shift and the spin-lattice relaxation time $T_{1{\rho}}$ were investigated using $^1H$ magic-angle spinning nuclear magnetic resonance (MAS NMR), in order to understand the role of $NH_4{^+}$ and $H_2O$. The rise in $T_{1{\rho}}$ with temperature was related to variations in the symmetry of the surrounding $H_2O$ and $NH_4{^+}$.

키워드

JGGMB2_2019_v23n2_40_f0001.png 이미지

Figure 1. Tetragonal structure of (NH4)2MnCl4∙2H2O crystals.

JGGMB2_2019_v23n2_40_f0002.png 이미지

Figure 2. Differential scanning calorimetry (DSC) thermogram of (NH4)2MnCl4∙2H2O upon heating

JGGMB2_2019_v23n2_40_f0003.png 이미지

Figure 2. Thermogravimetric analysis (TGA) of (NH4)2MnCl4∙2H2O (inset: changes in transparency

JGGMB2_2019_v23n2_40_f0004.png 이미지

Figure 3. Chemical shift in 1H magic-angle spinning nuclear magnetic resonance (MAS NMR) spectrum of (NH4)2MnCl4∙2H2O as a function of temperature (inset: 1H MAS NMR spectrum at 300 K, and spinning sideband is marked with asterisks).

JGGMB2_2019_v23n2_40_f0005.png 이미지

Figure 4. Saturation recovery traces for delay time of 1H in (NH4)2MnCl4∙2H2O at 190, 270, 350, and 430 K.

JGGMB2_2019_v23n2_40_f0006.png 이미지

Figure 6. Temperature dependences of the 1H spin-lattice relaxation time in the rotating frame T for H2O and NH4+ in (NH4)2MnCl4∙2H2O

Table 1. Phase transition temperatures (TC), crystal structures, and 1H spin-lattice relaxation time in the rotating frame (T1ρ) values of (NH4)2MnCl4∙2H2O and (NH4)2CuCl4∙2H2O.

JGGMB2_2019_v23n2_40_t0001.png 이미지

참고문헌

  1. N. Narsimlu and K. S. Kumar, Cryst. Res. Technol. 37, 945 (2002) https://doi.org/10.1002/1521-4079(200209)37:9<945::AID-CRAT945>3.0.CO;2-V
  2. V. D. Franke, Yu. O. Punin, and L. A. P'yankova, Crystallogr. Rep. 52, 349 (2007) https://doi.org/10.1134/S1063774507020319
  3. Z. Tylczynski and M. Wiesner, Mater. Chem. Phys. 149-150, 566 (2015) https://doi.org/10.1016/j.matchemphys.2014.11.007
  4. Z. Tylczynski, M. Wiesner, and A. Trzaskowska, Physica B 500, 85 (2016) https://doi.org/10.1016/j.physb.2016.07.014
  5. A. R. Lim and J. Cho, J. Mol. Structure 1146, 324 (2017) https://doi.org/10.1016/j.molstruc.2017.06.021
  6. R. Chidambaram, Q. O. Navarro, A. Garcia, K. Linggoatmodjo, L. S. Chien, and I.-H. Suh, Acta Cryst. B26, 827 (1970)
  7. K. Waizumi, H. Masuda, and H. Ohtaki, Acta Cryst. C48, 1374 (1992)
  8. S. Haussuhl, R. Podeswa, and R. Wagner, Zeit. Fur Kristallogr. 173, 139 (1985) https://doi.org/10.1524/zkri.1985.173.1-2.139
  9. J. D. Martin, R. F. Hess, and P. D. Boyle, Inorg. Chem. 43, 3242 (2004) https://doi.org/10.1021/ic049881r
  10. A.R. Lim and S.H. Kim, RSC Adv. 8, 6502 (2018) https://doi.org/10.1039/C8RA00170G
  11. J. L. Koenig, Spectroscopy of Polymers, Elsevier, New York, 1999
  12. A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London, 1961
  13. B. Cowan, Nuclear Magnetic Resonance and Relaxation, Cambridge University, UK, 1997
  14. T.H. Yeom, J. Korean Mag. Res. Soc. 22, 107 (2018) https://doi.org/10.6564/JKMRS.2018.22.4.107
  15. A.R. Lim, S.W. Kim and Y.L. Joo, J. Appl. Phys. 121, 215501 (2017) https://doi.org/10.1063/1.4984604
  16. A.R. Lim, RSC Adv., 8, 18656 (2018) https://doi.org/10.1039/C8RA02363H