DOI QR코드

DOI QR Code

Squint-less Phased Array Antenna Near-field Subwavelength Focusing with True-time Optical Delay Line

광 지연선로를 이용한 스퀸팅이 없는 위상배열 안테나의 근접장 서브파장 포커싱

  • 정영진 (울산과학대학교 전기전자공학부)
  • Received : 2019.02.07
  • Accepted : 2019.04.15
  • Published : 2019.06.25

Abstract

The near-field subwavelength squint-less focusing system of a phased array antenna is designed and demonstrated by numerical simulation. The Huygens-Fresnel principle is applied to numerical simulation for calculation of the phased array antenna at microwave frequency. It was shown that beam squinting can be eliminated, utilizing true-time optical delay lines based on a chirped fiber grating in the proposed system. Furthermore, subwavelength focusing with high numerical aperture can be achieved by considering the fact that the array elements of the phased-array antenna can be treated as diffractive elements in an optical lens system. Also, side lobes can be suppressed by decreasing the distance between element antennas to less than half of the wavelength.

본 연구에서는 광 지연선로를 이용한 스퀸팅(squinting)이 없는 위상배열 안테나의 근접장 미세파장 포커싱(subwavelength focusing)을 디자인하고 전산모사를 통해 검증하였다. 마이크로파 파장에서 위상배열 안테나의 수치적 계산을 위해 호이겐스-프레넬(Huygens-Fresnel) 원리를 적용하였다. 제안하는 시스템은 첩 광섬유 격자(chirped fiber grating)에 기반한 광 지연선로를 이용하여 빔 스퀸팅이 생기지 않는다는 것을 전산모사를 통해 확인하였다. 그리고 개별 안테나의 배열은 광학렌즈시스템에서 회절 소자로 간주할 수 있음에 착안해 높은 개구율(numerical aperture)을 구현하고 미세파장 포커싱을 얻었다. 또한, 위상배열 안테나의 안테나 사이 거리를 반파장 이하로 줄여 사이드 로브를 억제할 수 있음을 보였다.

Keywords

KGHHBU_2019_v30n3_94_f0001.png 이미지

Fig. 1. Coordinate definition for the calculation of electromagnetic field distribution.

KGHHBU_2019_v30n3_94_f0002.png 이미지

Fig. 2. Arbitrary time delay feeding system employing tunable filters and chirped fiber grating; EOM: electro-optic modulator; PD: photodiode.

KGHHBU_2019_v30n3_94_f0003.png 이미지

Fig. 3. Controllable area of the phased array antenna system.

KGHHBU_2019_v30n3_94_f0004.png 이미지

Fig. 4. Description of the phased array antenna under numerical simulation system.

KGHHBU_2019_v30n3_94_f0005.png 이미지

Fig. 5. Comparison of beam squinting characteristics between conventional phased array antenna and array antenna with true time delay lines.

KGHHBU_2019_v30n3_94_f0006.png 이미지

Fig. 6. Required group delay for focusing at x = 5 [cm] and z = 15 [cm] in the case of the proposed array antenna employing true time optical delay lines.

KGHHBU_2019_v30n3_94_f0007.png 이미지

Fig. 7. Required phase difference for focusing at x = 5 [cm] and z = 15 [cm] in the case of general phased array antenna.

KGHHBU_2019_v30n3_94_f0009.png 이미지

Fig. 8. Comparison of the spot size of focal point with numerical aperture variation.

KGHHBU_2019_v30n3_94_f0010.png 이미지

Fig. 10. Comparison of intensity profile while varying the space between antennas.

KGHHBU_2019_v30n3_94_f0011.png 이미지

Fig. 11. Comparison of the lateral direction (x-axis) intensity profile of focal spot with varying the gap between antennas.

KGHHBU_2019_v30n3_94_f0012.png 이미지

Fig. 9. Subwavelength focusing characteristics. (a) Lateral direction (x-axis) intensity profile of the focal spot with numerical aperture variation. (b) Spot size as a function of the numerical aperture.

Table 1. Simulation parameters for observing beam squinting caused by frequency detuning

KGHHBU_2019_v30n3_94_t0001.png 이미지

Table 2. Simulation parameters for observing subwavelength focusing

KGHHBU_2019_v30n3_94_t0002.png 이미지

Table 3. Simulation parameters for observing side lobes

KGHHBU_2019_v30n3_94_t0003.png 이미지

References

  1. C. P. Fucetola, A. A. Patel, E. E. Moon, T. B. O'Reilly, and H. I. Smith, "Coherent diffraction lithography: Periodic patterns via mask-based interference lithography," J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. Process., Meas., Phenom. 27, 2947-2950 (2009). https://doi.org/10.1116/1.3237093
  2. T. Liu, S. Yang, and Z. Jiang, "Electromagnetic exploration of far-field superfocusing nanostructured metasurfaces," Opt. Express 24, 16298-16308 (2016).
  3. Y. J. Jung, D. Park, S. Koo, S. Yu, and N. Park, "Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides," Opt. Express 17, 18852-18857 (2009). https://doi.org/10.1364/OE.17.018852
  4. P. Nepa and A. Buffi, "Near-field-focused microwave antennas: Near-field shaping and implementation," IEEE Antennas Propag. Mag. 59, 42-53 (2017). https://doi.org/10.1109/MAP.2017.2686118
  5. P. Nepa, A. Buffi, A. Michel, and G. Manara, "Technologies for near-field focused microwave antennas," Int. J. Antennas Propag. 2017, 7694281 (2017).
  6. A. Buffi, P. Nepa, and G. Manara, "Design criteria for near-field-focused planar arrays," IEEE Antennas Propag. Mag. 54, 40-45 (2012).
  7. K. D. Stephan, J. B. Mead, D. M. Pozar, L. Wang, and J. A. Pearce, "A near field focused microstrip array for a radiometric temperature sensor," IEEE Trans. Antennas Propag. 55, 1199-1203 (2007). https://doi.org/10.1109/TAP.2007.893429
  8. I. Frigyes and A. J. Seeds, "Optically generated true-time delay in phased-array antennas," IEEE Trans. Microw. Theory Techn. 43, 2378-2386 (1995). https://doi.org/10.1109/22.414592
  9. X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, "Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source," Photon. Res. 6, B30-B36 (2018). https://doi.org/10.1364/PRJ.6.000B30
  10. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, "Variable delay line for phased-array antenna based on a chirped fiber grating," IEEE Trans. Microw. Theory Techn. 48, 1352-1360 (2000). https://doi.org/10.1109/22.859480
  11. Y. Liu, J. Yang, and J. Yao, "Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line," IEEE Photon. Technol. Lett. 14, 1172-1174 (2002). https://doi.org/10.1109/LPT.2002.1022008
  12. H. Lee, H. Jeon, and J. Jung, "Optical true time-delay beam-forming for phased array antenna using a dispersion compensating fiber and a multi-wavelength laser," in Proc. Fly by Wireless Workshop 2011 4th Annual Caneus (Montreal, Canada, Jun. 2011), pp. 1-4.
  13. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, "The first demonstration of an optically steered microwave phased array antenna using true-time-delay," J. Lightw. Technol. 9, 1124-1131 (1991). https://doi.org/10.1109/50.85809
  14. X. Ye, F. Zhang, and S. Pan, "Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements," Opt. Lett. 41, 3956-3959 (2016). https://doi.org/10.1364/OL.41.003956
  15. J. Wang, P. Hou, H. Cai, J. Sun, S. Wang, L. Wang, and F. Yang, "Continuous angle steering of an optically-controlled phased array antenna based on differential true time delay constituted by micro-optical components," Opt. Express 23, 9432-9439 (2015). https://doi.org/10.1364/OE.23.009432
  16. M. Duan and J. Ma, "Wide range and high resolution true time delay unit for phased array antenna," in Proc. Asia Communications and Photonics Conference (Hangzhou, China, Oct. 2018), pp. 1-3.
  17. J. Zhao, Z. Ding, F. Yang, and H. Cai, "Configurable photonic true-time delay line based on cascaded linearly chirped fiber bragg grating," in Proc. International Topical Meeting on Microwave Photonics (Toulouse, France, Oct. 2018), pp. 1-4.
  18. N. Shi, L. Zhang, S. Sun, J. Tang, M. Li, W. Li, and N. Zhu, "X-band optically steered phased array antenna with ultra-fast beam scanning," in Proc. International Conference on Optical Communications and Networks (Wuzhen, China, Aug. 2017), pp. 1-3.
  19. R. Rotman, M. Tur, and L. Yaron, "True time delay in phased arrays," Proc. IEEE 104, 504-518. (2016). https://doi.org/10.1109/JPROC.2016.2515122
  20. J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, "Chirped fibre Bragg gratings for phased-array antennas," Electron. Lett. 33, 545-546 (1997). https://doi.org/10.1049/el:19970407
  21. H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, "Photonic beamformer for phased array antennas using a fiber grating prism," Photonics Technol. Lett. 9, 241-243 (1997). https://doi.org/10.1109/68.553105
  22. C. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, "On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide," Appl. Phys. Lett. 112, 071104 (2018). https://doi.org/10.1063/1.5006188
  23. T. Tatoli, D. Conteduca, F. Dell'Olio, C. Ciminelli, and M. N. Armenise, "Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas," Appl. Opt. 55, 4342-4349 (2016). https://doi.org/10.1364/AO.55.004342
  24. J. W. Goodman, Introduction to Fourier optics (Mcgraw-Hill Internal editions, 1996).
  25. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, UK, 1997).