DOI QR코드

DOI QR Code

Study of a Method for Measuring Hydrogen Gas Concentration Using a Photon-counting Raman Lidar System

광 계수 방식의 라만 라이다 시스템을 이용한 원격 수소 가스 농도 계측 방법에 대한 연구

  • Choi, In Young (Division of Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Baik, Sung Hoon (Division of Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Cha, Jung Ho (Division of R&D Center, Korea Nuclear Technology Co., Ltd.) ;
  • Kim, Jin Ho (Division of R&D Center, Korea Nuclear Technology Co., Ltd.)
  • 최인영 (한국원자력연구원 양자광학연구부) ;
  • 백성훈 (한국원자력연구원 양자광학연구부) ;
  • 차정호 ((주)한국원자력기술 기술연구소) ;
  • 김진호 ((주)한국원자력기술 기술연구소)
  • Received : 2019.03.06
  • Accepted : 2019.04.29
  • Published : 2019.06.25

Abstract

This paper discusses the development of a Raman lidar system for remote detection and measurement of hydrogen gas by using a photon counter. The Raman signal of the hydrogen gas is very weak and has a very low signal-to-noise ratio. The photon counter has the advantage of improving the signal-to-noise ratio, because it has a discriminator to eliminate the background noise from the Raman signal of the hydrogen gas. Therefore, a small and portable Raman lidar system was developed using a low-power pulsed laser and a photon-counter system to measure the hydrogen gas concentration remotely. To verify the capability of measuring hydrogen gas using the developed photon-counting Raman lidar system, experiments were carried out using a gas chamber in which it is possible to adjust the hydrogen gas concentration. As a result, our photon-counting Raman lidar system is seen to measure a minimum concentration of 0.65 vol.% hydrogen gas at a distance of 10 m.

본 논문은 원격으로 수소 가스의 계측이 가능한 광 계수 방식의 소형 라만 라이다 시스템 개발에 관한 것이다. 수소 가스에 의한 라만 신호는 매우 미약한 신호로서, 신호 대 잡음비가 매우 낮다. 광 계수기는 광 판별기를 갖고 있어, 레이저에 의하여 발생한 배경 신호의 전기적 잡음을 제거할 수 있는 장점을 갖고 있다. 본 연구에서는 출력이 낮은 레이저와 광 계수기를 이용하여 소형의 라만 라이다 시스템을 개발하였다. 개발된 광 계수 방식의 라만 라이다 시스템의 원격 수소 가스 검출 능력을 증명하기 위하여 수소 가스 농도를 조절할 수 있는 가스 챔버를 이용하여 수소 가스 농도 측정 실험을 수행하였다. 그 결과 10 m 거리에서 최소 0.65 vol.%의 수소 가스 농도 검출이 가능하였다.

Keywords

KGHHBU_2019_v30n3_114_f0001.png 이미지

Fig. 1. Principle of the photon counting process.

KGHHBU_2019_v30n3_114_f0002.png 이미지

Fig. 2. 3D design lay-out of developed photon counting Raman lidar system.

KGHHBU_2019_v30n3_114_f0003.png 이미지

Fig. 3. Photon counting results at 100 vol.% of hydrogen gas concentration.

KGHHBU_2019_v30n3_114_f0004.png 이미지

Fig. 4. Results of the first experiment according to the variation of the hydrogen gas concentration.

KGHHBU_2019_v30n3_114_f0005.png 이미지

Fig. 5. Results of the second experiment according to the variation of the hydrogen gas concentration.

KGHHBU_2019_v30n3_114_f0006.png 이미지

Fig. 6. Results of the third experiment according to the variation of the hydrogen gas concentration.

Table 1. Comparison of the specification of previously invented Raman lidar system[1-9]

KGHHBU_2019_v30n3_114_t0001.png 이미지

Table 2. Specifications of developed photon counting Raman lidar system

KGHHBU_2019_v30n3_114_t0002.png 이미지

Table 3. Analysis results of the first experiment according to the variation of the hydrogen gas concentration

KGHHBU_2019_v30n3_114_t0003.png 이미지

Table 4. Analysis results of the second experiment according to the variation of the hydrogen gas concentration

KGHHBU_2019_v30n3_114_t0004.png 이미지

Table 5. Analysis results of the third experiment according to the variation of the hydrogen gas concentration

KGHHBU_2019_v30n3_114_t0005.png 이미지

Table 6. Results of the average error rate and standard deviation according to the experiment No.

KGHHBU_2019_v30n3_114_t0006.png 이미지

References

  1. R. N. Verem'ev, V. E. Privalov, and V. G. Shemanin, "Optimization of a semiconductor lidar for detecting atmospheric molecular iodine and hydrogen," Tech. Phys. 45, 636-640 (2000). https://doi.org/10.1134/1.1259691
  2. E. I. Voronina, V. E. Privalov, and V. G. Shemanin, "Proving hydrogen molecules with a laboratory Raman lidar," Tech. Phys. Lett. 30, 178-179 (2004). https://doi.org/10.1134/1.1707159
  3. A. J. Ball, "Investigation of gaseous hydrogen leak detection using Raman scattering and laser induced breakdown spectroscopy," M. S. Thesis, University of Florida (2005).
  4. Z. Rovert and B. Nick, "Wide area and distributed hydrogen sensors," International Conference on Hydrogen Safety (2009).
  5. H. Nynomiya, S. Yeashima, and K. Ickawa, "Raman lidar system for hydrogen gas detection," Opt. Eng. 49, 0943110-09430115 (2007).
  6. Y. Noguchi, T. Shiina, K. Noguchi, T. Fukuchi, H. Ninomiya, I. Asahi. S. Sugimoto, and Y. Shimamoto, "Detection of low concentration hydrogen gas by compact Raman lidar," in Proc. International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim (Australia, Aug. 2011), pp. 846-847.
  7. I. Asahi, S. Sugimoto, H. Ninomiya, T. Fukuchi, and T. Shiina, "Remote Sensing of hydrogen gas concentration distribution by Raman lidar," Proc. SPIE 8526, 852601-852608 (2012).
  8. I. Y. Choi, S. H. Baik, N. G. Park, H. Y. Kang, J. H. Kim, and N. J. Lee, "Development of a Raman lidar system for remote monitoring of hydrogen gas," Korean J. Opt. Photon. 28, 166-171 (2017). https://doi.org/10.3807/KJOP.2017.28.4.166
  9. I. Y. Choi, S. H. Baik, J. Y. Lim, J. H. Cha, and J. H. Kim, "Development of on-axis Raman lidar system for remotely measuring hydrogen gas at long distance," Korean J. Opt. Photon. 29, 119-1251 (2018). https://doi.org/10.3807/KJOP.2018.29.3.119