DOI QR코드

DOI QR Code

Contributing Factors to Diabetic Brain Injury and Cognitive Decline

  • Verma, Nirmal (Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky) ;
  • Despa, Florin (Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky)
  • Received : 2019.08.02
  • Accepted : 2019.10.02
  • Published : 2019.10.30

Abstract

The link of diabetes with co-occurring disorders in the brain involves complex and multifactorial pathways. Genetically engineered rodents that express familial Alzheimer's disease-associated mutant forms of amyloid precursor protein presenilin 1 (PSEN1) genes provided invaluable insights into the mechanisms and consequences of amyloid deposition in the brain. Adding diabetes factors (obesity, insulin impairment) to these animal models to predict success in translation to clinic have proven useful at some extent only. Here, we focus on contributing factors to diabetic brain injury with the aim of identifying appropriate animal models that can be used to mechanistically dissect the pathophysiology of diabetes-associated cognitive dysfunction and how diabetes medications may influence the development and progression of cognitive decline in humans with diabetes.

Keywords

Acknowledgement

This research was supported by: National Institutes of Health AG057290, AG053999 and Alzheimer's Association VMF-15-363458.

References

  1. Brady CC, Vannest JJ, Dolan LM, Kadis DS, Lee GR, Holland SK, Khoury JC, Shah AS. Obese adolescents with type 2 diabetes perform worse than controls on cognitive and behavioral assessments. Pediatr Diabetes 2017;18:297-303. https://doi.org/10.1111/pedi.12383
  2. Kadohara K, Sato I, Kawakami K. Diabetes mellitus and risk of early-onset Alzheimer's disease: a population-based case-control study. Eur J Neurol 2017;24:944-9. https://doi.org/10.1111/ene.13312
  3. de la Monte SM, Tong M, Lester-Coll N, Plater M Jr, Wands JR. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease. J Alzheimers Dis 2006;10:89-109. https://doi.org/10.3233/JAD-2006-10113
  4. Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 2009;66:300-5. https://doi.org/10.1001/archneurol.2009.27
  5. Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, Haneuse S, Craft S, Montine TJ, Kahn SE, McCormick W, McCurry SM, Bowen JD, Larson EB. Glucose levels and risk of dementia. N Engl J Med 2013;369:540-8. https://doi.org/10.1056/NEJMoa1215740
  6. Exalto LG, Biessels GJ, Karter AJ, Huang ES, Katon WJ, Minkoff JR, Whitmer RA. Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: a cohort study. Lancet Diabetes Endocrinol 2013;1:183-90. https://doi.org/10.1016/S2213-8587(13)70048-2
  7. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 2018;14:591-604. https://doi.org/10.1038/s41574-018-0048-7
  8. Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol 2014;2:246-55. https://doi.org/10.1016/S2213-8587(13)70088-3
  9. Luchsinger JA, Reitz C, Patel B, Tang MX, Manly JJ, Mayeux R. Relation of diabetes to mild cognitive impairment. Arch Neurol 2007;64:570-5. https://doi.org/10.1001/archneur.64.4.570
  10. Patrone C, Eriksson O, Lindholm D. Diabetes drugs and neurological disorders: new views and therapeutic possibilities. Lancet Diabetes Endocrinol 2014;2:256-62. https://doi.org/10.1016/S2213-8587(13)70125-6
  11. Areosa Sastre A, Vernooij RW, Gonzalez-Colaco Harmand M, Martinez G. Effect of the treatment of type 2 diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst Rev 2017;6:CD003804.
  12. Fernandez AM, Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 2012;13: 225-39. https://doi.org/10.1038/nrn3209
  13. Geijselaers SLC, Sep SJS, Stehouwer CDA, Biessels GJ. Glucose regulation, cognition, and brain MRI in type 2 diabetes: a systematic review. Lancet Diabetes Endocrinol 2015;3:75-89. https://doi.org/10.1016/S2213-8587(14)70148-2
  14. Rawlings AM, Sharrett AR, Mosley TH, Ballew SH, Deal JA, Selvin E. Glucose peaks and the risk of dementia and 20-year cognitive decline. Diabetes Care 2017;40:879-86. https://doi.org/10.2337/dc16-2203
  15. Sharma B, Singh N. Behavioral and biochemical investigations to explore pharmacological potential of PPAR-gamma agonists in vascular dementia of diabetic rats. Pharmacol Biochem Behav 2011;100:320-9. https://doi.org/10.1016/j.pbb.2011.08.020
  16. Gault VA, Holscher C. GLP-1 receptor agonists show neuroprotective effects in animal models of diabetes. Peptides 2018; 100:101-7. https://doi.org/10.1016/j.peptides.2017.11.017
  17. Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R, Sharkey J, Williamson R, Fuchs M, Kohler A, Glossmann H, Schneider R, Sutherland C, Schweiger S. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci U S A 2010;107:21830-5. https://doi.org/10.1073/pnas.0912793107
  18. Chen G, Cai L, Chen B, Liang J, Lin F, Li L, Lin L, Yao J, Wen J, Huang H. Serum level of endogenous secretory receptor for advanced glycation end products and other factors in type 2 diabetic patients with mild cognitive impairment. Diabetes Care 2011;34:2586-90. https://doi.org/10.2337/dc11-0958
  19. Perlmuter LC, Nathan DM, Goldfinger SH, Russo PA, Yates J, Larkin M. Triglyceride levels affect cognitive function in noninsulin-dependent diabetics. J Diabet Complications 1988;2: 210-3. https://doi.org/10.1016/S0891-6632(88)80011-4
  20. Di Paolo G, Kim TW. Linking lipids to Alzheimer's disease: cholesterol and beyond. Nat Rev Neurosci 2011;12:284-96. https://doi.org/10.1038/nrn3012
  21. Bruce DG, Davis WA, Casey GP, Starkstein SE, Clarnette RM, Foster JK, Almeida OP, Davis TM. Predictors of cognitive impairment and dementia in older people with diabetes. Diabetologia 2008;51:241-8. https://doi.org/10.1007/s00125-007-0894-7
  22. Hassing LB, Hofer SM, Nilsson SE, Berg S, Pedersen NL, McClearn G, Johansson B. Comorbid type 2 diabetes mellitus and hypertension exacerbates cognitive decline: evidence from a longitudinal study. Age Ageing 2004;33:355-61. https://doi.org/10.1093/ageing/afh100
  23. Johnson ML, Parikh N, Kunik ME, Schulz PE, Patel JG, Chen H, Aparasu RR, Morgan RO. Antihypertensive drug use and the risk of dementia in patients with diabetes mellitus. Alzheimers Dement 2012;8:437-44. https://doi.org/10.1016/j.jalz.2011.05.2414
  24. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol 2005;4:487-99. https://doi.org/10.1016/S1474-4422(05)70141-1
  25. Ly H, Verma N, Wu F, Liu M, Saatman KE, Nelson PT, Slevin JT, Goldstein LB, Biessels GJ, Despa F. Brain microvascular injury and white matter disease provoked by diabetes-associated hyperamylinemia. Ann Neurol 2017;82:208-22. https://doi.org/10.1002/ana.24992
  26. Beckman JA, Creager MA. Vascular complications of diabetes. Circ Res 2016;118:1771-85. https://doi.org/10.1161/CIRCRESAHA.115.306884
  27. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 2004;63:582-92. https://doi.org/10.1016/j.cardiores.2004.05.001
  28. Viswanathan A, Rocca WA, Tzourio C. Vascular risk factors and dementia: how to move forward? Neurology 2009;72:368-74. https://doi.org/10.1212/01.wnl.0000341271.90478.8e
  29. Iadecola C. The pathobiology of vascular dementia. Neuron 2013;80:844-66. https://doi.org/10.1016/j.neuron.2013.10.008
  30. Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes mellitus and blood-brain barrier dysfunction: an overview. J Pharmacovigil 2014;2:125.
  31. Gorska-Ciebiada M, Saryusz-Wolska M, Borkowska A, Ciebiada M, Loba J. C-reactive protein, advanced glycation end products, and their receptor in type 2 diabetic, elderly patients with mild cognitive impairment. Front Aging Neurosci 2015;7:209.
  32. Marioni RE, Deary IJ, Murray GD, Lowe GD, Strachan MW, Luciano M, Houlihan LM, Gow AJ, Harris SE, Rumley A, Stewart MC, Fowkes FG, Price JF. Genetic associations between fibrinogen and cognitive performance in three Scottish cohorts. Behav Genet 2011;41:691-9. https://doi.org/10.1007/s10519-011-9449-2
  33. Marioni RE, Strachan MW, Reynolds RM, Lowe GD, Mitchell RJ, Fowkes FG, Frier BM, Lee AJ, Butcher I, Rumley A, Murray GD, Deary IJ, Price JF. Association between raised inflammatory markers and cognitive decline in elderly people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes 2010; 59:710-3. https://doi.org/10.2337/db09-1163
  34. Keller M, Feinkohl I, Anderson N, Deary IJ, Strachan MWJ, Price JF. Plasma fibrinogen and cognitive decline in older people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabet Med 2012;29:30-117. https://doi.org/10.1111/j.1464-5491.2011.03555_1.x
  35. Feinkohl I, Price JF, Strachan MW, Frier BM. The impact of diabetes on cognitive decline: potential vascular, metabolic, and psychosocial risk factors. Alzheimers Res Ther 2015;7:46. https://doi.org/10.1186/s13195-015-0130-5
  36. Ding J, Patton N, Deary IJ, Strachan MW, Fowkes FG, Mitchell RJ, Price JF. Retinal microvascular abnormalities and cognitive dysfunction: a systematic review. Br J Ophthalmol 2008;92:1017-25. https://doi.org/10.1136/bjo.2008.141994
  37. Hugenschmidt CE, Lovato JF, Ambrosius WT, Bryan RN, Gerstein HC, Horowitz KR, Launer LJ, Lazar RM, Murray AM, Chew EY, Danis RP, Williamson JD, Miller ME, Ding J. The cross-sectional and longitudinal associations of diabetic retinopathy with cognitive function and brain MRI findings: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 2014;37:3244-52. https://doi.org/10.2337/dc14-0502
  38. Quaegebeur A, Lange C, Carmeliet P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 2011;71:406-24. https://doi.org/10.1016/j.neuron.2011.07.013
  39. Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 2011;91:795-826. https://doi.org/10.1152/physrev.00042.2009
  40. Zraika S, Hull RL, Udayasankar J, Aston-Mourney K, Subramanian SL, Kisilevsky R, Szarek WA, Kahn SE. Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis. Diabetologia 2009;52:626-35. https://doi.org/10.1007/s00125-008-1255-x
  41. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nunez G, Yodoi J, Kahn SE, Lavelle EC, O'Neill LA. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-$1{\beta}$ in type 2 diabetes. Nat Immunol 2010;11:897-904. https://doi.org/10.1038/ni.1935
  42. Despa S, Margulies KB, Chen L, Knowlton AA, Havel PJ, Taegtmeyer H, Bers DM, Despa F. Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: a study in humans and rats. Circ Res 2012;110:598-608. https://doi.org/10.1161/CIRCRESAHA.111.258285
  43. Gong W, Liu ZH, Zeng CH, Peng A, Chen HP, Zhou H, Li LS. Amylin deposition in the kidney of patients with diabetic nephropathy. Kidney Int 2007;72:213-8. https://doi.org/10.1038/sj.ki.5002305
  44. Jackson K, Barisone GA, Diaz E, Jin LW, DeCarli C, Despa F. Amylin deposition in the brain: a second amyloid in Alzheimer disease? Ann Neurol 2013;74:517-26. https://doi.org/10.1002/ana.23956
  45. Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT. In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. Am J Pathol 2015;185:834-46. https://doi.org/10.1016/j.ajpath.2014.11.016
  46. Schultz N, Byman E, Fex M, Wennstrom M. Amylin alters human brain pericyte viability and NG2 expression. J Cereb Blood Flow Metab 2017;37:1470-82. https://doi.org/10.1177/0271678X16657093
  47. Fawver JN, Ghiwot Y, Koola C, Carrera W, Rodriguez-Rivera J, Hernandez C, Dineley KT, Kong Y, Li J, Jhamandas J, Perry G, Murray IV. Islet amyloid polypeptide (IAPP): a second amyloid in Alzheimer's disease. Curr Alzheimer Res 2014;11:928-40. https://doi.org/10.2174/1567205011666141107124538
  48. Roostaei T, Nazeri A, Felsky D, De Jager PL, Schneider JA, Pollock BG, Bennett DA, Voineskos AN; Alzheimer's Disease Neuroimaging Initiative (ADNI). Genome-wide interaction study of brain beta-amyloid burden and cognitive impairment in Alzheimer's disease. Mol Psychiatry 2017;22:287-95. https://doi.org/10.1038/mp.2016.35
  49. Thibault O, Anderson KL, DeMoll C, Brewer LD, Landfield PW, Porter NM. Hippocampal calcium dysregulation at the nexus of diabetes and brain aging. Eur J Pharmacol 2013;719:34-43. https://doi.org/10.1016/j.ejphar.2013.07.024
  50. Erickson JR, Pereira L, Wang L, Han G, Ferguson A, Dao K, Copeland RJ, Despa F, Hart GW, Ripplinger CM, Bers DM. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 2013;502:372-6. https://doi.org/10.1038/nature12537
  51. Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 2006;55:3320-5. https://doi.org/10.2337/db06-0485
  52. Li ZG, Zhang W, Sima AA. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 2007;56:1817-24. https://doi.org/10.2337/db07-0171
  53. Puig KL, Floden AM, Adhikari R, Golovko MY, Combs CK. Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. PLoS One 2012;7:e30378. https://doi.org/10.1371/journal.pone.0030378
  54. Liu Y, Liu L, Lu S, Wang D, Liu X, Xie L, Wang G. Impaired amyloid $\beta$-degrading enzymes in brain of streptozotocin-induced diabetic rats. J Endocrinol Invest 2011;34:26-31. https://doi.org/10.1007/BF03346691
  55. Son SM, Song H, Byun J, Park KS, Jang HC, Park YJ, Mook-Jung I. Accumulation of autophagosomes contributes to enhanced amyloidogenic APP processing under insulin-resistant conditions. Autophagy 2012;8:1842-4. https://doi.org/10.4161/auto.21861
  56. Ramos-Rodriguez JJ, Ortiz-Barajas O, Gamero-Carrasco C, de la Rosa PR, Infante-Garcia C, Zopeque-Garcia N, Lechuga-Sancho AM, Garcia-Alloza M. Prediabetes-induced vascular alterations exacerbate central pathology in APPswe/PS1dE9 mice. Psychoneuroendocrinology 2014;48:123-35. https://doi.org/10.1016/j.psyneuen.2014.06.005
  57. Devi L, Alldred MJ, Ginsberg SD, Ohno M. Mechanisms underlying insulin deficiency-induced acceleration of $\beta$-amyloidosis in a mouse model of Alzheimer's disease. PLoS One 2012;7: e32792. https://doi.org/10.1371/journal.pone.0032792
  58. Bell GA, Fadool DA. Awake, long-term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice. Physiol Behav 2017;174:104-13. https://doi.org/10.1016/j.physbeh.2017.02.044
  59. Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci 2009;29:6734-51. https://doi.org/10.1523/JNEUROSCI.1350-09.2009
  60. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci 2015;16:660-71. https://doi.org/10.1038/nrn4019
  61. Ilaiwy A, Liu M, Parry TL, Bain JR, Newgard CB, Schisler JC, Muehlbauer MJ, Despa F, Willis MS. Human amylin proteotoxicity impairs protein biosynthesis, and alters major cellular signaling pathways in the heart, brain and liver of humanized diabetic rat model in vivo. Metabolomics 2016;12:95. https://doi.org/10.1007/s11306-016-1022-9
  62. Verma N, Ly H, Liu M, Chen J, Zhu H, Chow M, Hersh LB, Despa F. Intraneuronal amylin deposition, peroxidative membrane injury and increased IL-$1{\beta}$ synthesis in brains of Alzheimer's disease patients with type-2 diabetes and in diabetic hip rats. J Alzheimers Dis 2016;53:259-72. https://doi.org/10.3233/JAD-160047
  63. Verma N, Liu M, Ly H, Loria A, Campbell KS, Bush H, Kern PA, Jose PA, Taegtmeyer H, Bers DM, Despa S, Goldstein LB, Murray AJ, Despa F. Diabetic microcirculatory disturbances and pathologic erythropoiesis are provoked by deposition of amyloid-forming amylin in red blood cells and capillaries. Kidney Int 2019 Sep 5 [Epub]. https://doi.org/10.1016/j.kint.2019.07.028.

Cited by

  1. Letter: Hypoglycemia and Dementia Risk in Older Patients with Type 2 Diabetes Mellitus: A Propensity-Score Matched Analysis of a Population-Based Cohort Study ( Diabetes Metab J 2020;44:125–33 vol.44, pp.2, 2020, https://doi.org/10.4093/dmj.2020.0072