DOI QR코드

DOI QR Code

Sarcopenia: Ammonia metabolism and hepatic encephalopathy

  • Jindal, Ankur (Department of Hepatology, Institute of Liver and Biliary Sciences) ;
  • Jagdish, Rakesh Kumar (Department of Hepatology, Institute of Liver and Biliary Sciences)
  • 투고 : 2019.01.30
  • 심사 : 2019.02.07
  • 발행 : 2019.09.25

초록

Sarcopenia (loss of muscle mass and/or strength) frequently complicates liver cirrhosis and adversely affects the quality of life; cirrhosis related liver decompensation and significantly decreases wait-list and post-liver transplantation survival. The main therapeutic strategies to improve or reverse sarcopenia include dietary interventions (supplemental calorie and protein intake), increased physical activity (supervised resistance and endurance exercises), hormonal therapy (testosterone), and ammonia lowering agents (L-ornithine L-aspartate, branch chain amino acids) as well as mechanistic approaches that target underlying molecular and metabolic abnormalities. Besides other factors, hyperammonemia has recently gained attention and increase sarcopenia by various mechanisms including increased expression of myostatin, increased phosphorylation of eukaryotic initiation factor 2a, cataplerosis of α ketoglutarate, mitochondrial dysfunction, increased reactive oxygen species that decrease protein synthesis and increased autophagy-mediated proteolysis. Sarcopenia contributes to frailty and increases the risk of minimal and overt hepatic encephalopathy.

키워드

참고문헌

  1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 2010;39:412-423. https://doi.org/10.1093/ageing/afq034
  2. Janssen I. Evolution of sarcopenia research. Appl Physiol Nutr Metab 2010;35:707-712. https://doi.org/10.1139/H10-067
  3. Montano-Loza AJ. Clinical relevance of sarcopenia in patients with cirrhosis. World J Gastroenterol 2014;20:8061-8071. https://doi.org/10.3748/wjg.v20.i25.8061
  4. Tandon P, Ney M, Irwin I, Ma MM, Gramlich L, Bain VG, et al. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl 2012;18:1209-1216. https://doi.org/10.1002/lt.23495
  5. Kim G, Kang SH, Kim MY, Baik SK. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS One 2017;12:e0186990. https://doi.org/10.1371/journal.pone.0186990
  6. Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J, Baracos VE, Sawyer MB, Pang JX, et al. Inclusion of sarcopenia within MELD (MELDSarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol 2015;6:e102. https://doi.org/10.1038/ctg.2015.31
  7. Kang SH, Jeong WK, Baik SK, Cha SH, Kim MY. Impact of sarcopenia on prognostic value of cirrhosis: going beyond the hepatic venous pressure gradient and MELD score. J Cachexia Sarcopenia Muscle 2018;9:860-870. https://doi.org/10.1002/jcsm.12333
  8. Musumeci G. Sarcopenia and exercise "The State of the Art". J Funct Morphol Kinesiol 2017;2:40. https://doi.org/10.3390/jfmk2040040
  9. Hanai T, Shiraki M, Nishimura K, Ohnishi S, Imai K, Suetsugu A, et al. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition 2015;31:193-199. https://doi.org/10.1016/j.nut.2014.07.005
  10. Durand F, Buyse S, Francoz C, Laouenan C, Bruno O, Belghiti J, et al. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J Hepatol 2014;60:1151-1157. https://doi.org/10.1016/j.jhep.2014.02.026
  11. Montano-Loza AJ, Meza-Junco J, Prado CM, Lieffers JR, Baracos VE, Bain VG, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol 2012;10:166-173, 173.e1. https://doi.org/10.1016/j.cgh.2011.08.028
  12. Marchesini G, Bianchi G, Amodio P, Salerno F, Merli M, Panella C, et al. Factors associated with poor health-related quality of life of patients with cirrhosis. Gastroenterology 2001;120:170-178. https://doi.org/10.1053/gast.2001.21193
  13. Krell RW, Kaul DR, Martin AR, Englesbe MJ, Sonnenday CJ, Cai S, et al. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transpl 2013;19:1396-1402. https://doi.org/10.1002/lt.23752
  14. Merli M, Giusto M, Lucidi C, Giannelli V, Pentassuglio I, Di Gregorio V, et al. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis 2013;28:281-284. https://doi.org/10.1007/s11011-012-9365-z
  15. DiMartini A, Cruz RJ Jr, Dew MA, Myaskovsky L, Goodpaster B, Fox K, et al. Muscle mass predicts outcomes following liver transplantation. Liver Transpl 2013;19:1172-1180. https://doi.org/10.1002/lt.23724
  16. Dasarathy S. Posttransplant sarcopenia: an underrecognized early consequence of liver transplantation. Dig Dis Sci 2013;58:3103-3111. https://doi.org/10.1007/s10620-013-2791-x
  17. Tsien C, Shah SN, McCullough AJ, Dasarathy S. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur J Gastroenterol Hepatol 2013;25:85-93. https://doi.org/10.1097/MEG.0b013e328359a759
  18. Tsien C, Garber A, Narayanan A, Shah SN, Barnes D, Eghtesad B, et al. Post-liver transplantation sarcopenia in cirrhosis: a prospective evaluation. J Gastroenterol Hepatol 2014;29:1250-1257. https://doi.org/10.1111/jgh.12524
  19. Hayashi F, Matsumoto Y, Momoki C, Yuikawa M, Okada G, Hamakawa E, et al. Physical inactivity and insufficient dietary intake are associated with the frequency of sarcopenia in patients with compensated viral liver cirrhosis. Hepatol Res 2013;43:1264-1275. https://doi.org/10.1111/hepr.12085
  20. Madden AM, Bradbury W, Morgan MY. Taste perception in cirrhosis: its relationship to circulating micronutrients and food preferences. Hepatology 1997;26:40-48. https://doi.org/10.1053/jhep.1997.v26.pm0009214450
  21. Romiti A, Merli M, Martorano M, Parrilli G, Martino F, Riggio O, et al. Malabsorption and nutritional abnormalities in patients with liver cirrhosis. Ital J Gastroenterol 1990;22:118-123.
  22. Aoufi Rabih S, Garcia Agudo R, Legaz Huidobro ML, Ynfante Ferrus M, Gonzalez Carro P, Perez Roldan F, et al. Exocrine pancreatic insufficiency and chronic pancreatitis in chronic alcoholic liver disease: coincidence or shared toxicity? Pancreas 2014;43:730-734. https://doi.org/10.1097/MPA.0000000000000085
  23. Morrison WL, Bouchier IA, Gibson JN, Rennie MJ. Skeletal muscle and whole-body protein turnover in cirrhosis. Clin Sci (Lond) 1990;78:613-619. https://doi.org/10.1042/cs0780613
  24. Roubenoff R. Sarcopenia: effects on body composition and function. J Gerontol A Biol Sci Med Sci 2003;58:1012-1017. https://doi.org/10.1093/gerona/58.11.M1012
  25. Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. World J Gastroenterol 2013;19:7620-7629. https://doi.org/10.3748/wjg.v19.i43.7620
  26. Tsien C, Davuluri G, Singh D, Allawy A, Ten Have GA, Thapaliya S, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology 2015;61:2018-2029. https://doi.org/10.1002/hep.27717
  27. Handelsman DJ, Strasser S, McDonald JA, Conway AJ, McCaughan GW. Hypothalamic-pituitary-testicular function in end-stage nonalcoholic liver disease before and after liver transplantation. Clin Endocrinol (Oxf) 1995;43:331-337. https://doi.org/10.1111/j.1365-2265.1995.tb02040.x
  28. Grossmann M, Hoermann R, Gani L, Chan I, Cheung A, Gow PJ, et al. Low testosterone levels as an independent predictor of mortality in men with chronic liver disease. Clin Endocrinol (Oxf) 2012;77:323-328. https://doi.org/10.1111/j.1365-2265.2012.04347.x
  29. Orr R, Fiatarone Singh M. The anabolic androgenic steroid oxandrolone in the treatment of wasting and catabolic disorders: review of efficacy and safety. Drugs 2004;64:725-750. https://doi.org/10.2165/00003495-200464070-00004
  30. Sinclair M, Grossmann M, Hoermann R, Angus PW, Gow PJ. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomized controlled trial. J Hepatol 2016;65:906-913. https://doi.org/10.1016/j.jhep.2016.06.007
  31. Beyer I, Mets T, Bautmans I. Chronic low-grade inflammation and age-related sarcopenia. Curr Opin Clin Nutr Metab Care 2012;15:12-22. https://doi.org/10.1097/MCO.0b013e32834dd297
  32. Thapaliya S, Runkana A, McMullen MR, Nagy LE, McDonald C, Naga Prasad SV, et al. Alcohol-induced autophagy contributes to loss in skeletal muscle mass. Autophagy 2014;10:677-690. https://doi.org/10.4161/auto.27918
  33. Garcia PS, Cabbabe A, Kambadur R, Nicholas G, Csete M. Briefreports: elevated myostatin levels in patients with liver disease: a potential contributor to skeletal muscle wasting. Anesth Analg 2010;111:707-709. https://doi.org/10.1213/ane.0b013e3181eac1c9
  34. Qiu J, Thapaliya S, Runkana A, Yang Y, Tsien C, Mohan ML, et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-${\kappa}B$-mediated mechanism. Proc Natl Acad Sci U S A 2013;110:18162-18167. https://doi.org/10.1073/pnas.1317049110
  35. Zietz B, Lock G, Plach B, Drobnik W, Grossmann J, Scholmerich J, et al. Dysfunction of the hypothalamic-pituitary- glandular axes and relation to Child-Pugh classification in male patients with alcoholic and virus-related cirrhosis. Eur J Gastroenterol Hepatol 2003;15:495-501. https://doi.org/10.1097/01.meg.0000059115.41030.e0
  36. Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J Appl Physiol (1985) 2009;106:1374-1384. https://doi.org/10.1152/japplphysiol.91397.2008
  37. Garikipati DK, Rodgers BD. Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing. J Endocrinol 2012;215:177-187. https://doi.org/10.1530/JOE-12-0260
  38. Olde Damink SW, Jalan R, Dejong CH. Interorgan ammonia trafficking in liver disease. Metab Brain Dis 2009;24:169-181. https://doi.org/10.1007/s11011-008-9122-5
  39. Richardson AJ, McKain N, Wallace RJ. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids. BMC Microbiol 2013;13:6. https://doi.org/10.1186/1471-2180-13-6
  40. Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, et al. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 2013;68:95-107. https://doi.org/10.1016/j.phrs.2012.11.005
  41. Walker V. Ammonia metabolism and hyperammonemic disorders. Adv Clin Chem 2014;67:73-150. https://doi.org/10.1016/bs.acc.2014.09.002
  42. Wright G, Noiret L, Olde Damink SW, Jalan R. Interorgan ammonia metabolism in liver failure: the basis of current and future therapies. Liver Int 2011;31:163-175. https://doi.org/10.1111/j.1478-3231.2010.02302.x
  43. Schnabl B. Linking intestinal homeostasis and liver disease. Curr Opin Gastroenterol 2013;29:264-270. https://doi.org/10.1097/mog.0b013e32835ff948
  44. Weiner ID, Verlander JW. Recent advances in understanding renal ammonia metabolism and transport. Curr Opin Nephrol Hypertens 2016;25:436-443. https://doi.org/10.1097/MNH.0000000000000255
  45. Dasarathy S. Myostatin and beyond in cirrhosis: all roads lead to sarcopenia. J Cachexia Sarcopenia Muscle 2017;8:864-869. https://doi.org/10.1002/jcsm.12262
  46. Nishikawa H, Enomoto H, Ishii A, Iwata Y, Miyamoto Y, Ishii N, et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J Cachexia Sarcopenia Muscle 2017;8:915-925. https://doi.org/10.1002/jcsm.12212
  47. Qiu J, Tsien C, Thapalaya S, Narayanan A, Weihl CC, Ching JK, et al. Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab 2012;303:E983-E993. https://doi.org/10.1152/ajpendo.00183.2012
  48. Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V. Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 2003;981:193-200. https://doi.org/10.1016/S0006-8993(03)03035-X
  49. Davuluri G, Krokowski D, Guan BJ, Kumar A, Thapaliya S, Singh D, et al. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of L-leucine in cirrhosis. J Hepatol 2016;65:929-937. https://doi.org/10.1016/j.jhep.2016.06.004
  50. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep 2016;17:1374-1395. https://doi.org/10.15252/embr.201642195
  51. Davuluri G, Allawy A, Thapaliya S, Rennison JH, Singh D, Kumar A, et al. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress. J Physiol 2016;594:7341-7360. https://doi.org/10.1113/JP272796
  52. Holecek M. Branched-chain amino acid supplementation in treatment of liver cirrhosis: updated views on how to attenuate their harmful effects on cataplerosis and ammonia formation. Nutrition 2017;41:80-85. https://doi.org/10.1016/j.nut.2017.04.003
  53. Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 2002;277:30409-30412. https://doi.org/10.1074/jbc.R200006200
  54. McDaniel J, Davuluri G, Hill EA, Moyer M, Runkana A, Prayson R, et al. Hyperammonemia results in reduced muscle function independent of muscle mass. Am J Physiol Gastrointest Liver Physiol 2016;310:G163-G170. https://doi.org/10.1152/ajpgi.00322.2015
  55. Jacobsen EB, Hamberg O, Quistorff B, Ott P. Reduced mitochondrial adenosine triphosphate synthesis in skeletal muscle in patients with Child-Pugh class B and C cirrhosis. Hepatology 2001;34:7-12. https://doi.org/10.1053/jhep.2001.25451
  56. Poh Z, Chang PE. A current review of the diagnostic and treatment strategies of hepatic encephalopathy. Int J Hepatol 2012;2012:480309. https://doi.org/10.1155/2012/480309
  57. Haussinger D, Schliess F. Pathogenetic mechanisms of hepatic encephalopathy. Gut 2008;57:1156-1165. https://doi.org/10.1136/gut.2007.122176
  58. Lucero C, Verna EC. The role of sarcopenia and frailty in hepatic encephalopathy management. Clin Liver Dis 2015;19:507-528. https://doi.org/10.1016/j.cld.2015.04.003
  59. Kalaitzakis E, Olsson R, Henfridsson P, Hugosson I, Bengtsson M, Jalan R, et al. Malnutrition and diabetes mellitus are related to hepatic encephalopathy in patients with liver cirrhosis. Liver Int 2007;27:1194-1201. https://doi.org/10.1111/j.1478-3231.2007.01562.x
  60. Huisman EJ, Trip EJ, Siersema PD, van Hoek B, van Erpecum KJ. Protein energy malnutrition predicts complications in liver cirrhosis. Eur J Gastroenterol Hepatol 2011;23:982-989. https://doi.org/10.1097/MEG.0b013e32834aa4bb
  61. Meza-Junco J, Montano-Loza AJ, Baracos VE, Prado CM, Bain VG, Beaumont C, et al. Sarcopenia as a prognostic index of nutritional status in concurrent cirrhosis and hepatocellular carcinoma. J Clin Gastroenterol 2013;47:861-870. https://doi.org/10.1097/mcg.0b013e318293a825
  62. Montano-Loza AJ, Meza-Junco J, Baracos VE, Prado CM, Ma M, Meeberg G, et al. Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver Transpl 2014;20:640-648. https://doi.org/10.1002/lt.23863
  63. Verna E, Chan C, Pisa J, Abdelmessih R, Lukose T, Krishnamoorthy S, et al. Frailty, physical performance, and sarcopenia measures in patients awaiting liver transplantation predict mortality and postoperative complications. Am J Transplant 2014;14(Suppl 3):742.
  64. Lai JC, Feng S, Terrault NA, Lizaola B, Hayssen H, Covinsky K. Frailty predicts waitlist mortality in liver transplant candidates. Am J Transplant 2014;14:1870-1879. https://doi.org/10.1111/ajt.12762
  65. Brusilow SW. Hyperammonemic encephalopathy. Medicine (Baltimore) 2002;81:240-249. https://doi.org/10.1097/00005792-200205000-00007
  66. Haussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S. Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 2000;32:1035-1038. https://doi.org/10.1016/S0168-8278(00)80110-5
  67. Guevara M, Baccaro ME, Torre A, Gomez-Anson B, Rios J, Torres F, et al. Hyponatremia is a risk factor of hepatic encephalopathy in patients with cirrhosis: a prospective study with time-dependent analysis. Am J Gastroenterol 2009;104:1382-1389. https://doi.org/10.1038/ajg.2009.293
  68. Seyan AS, Hughes RD, Shawcross DL. Changing face of hepatic encephalopathy: role of inflammation and oxidative stress. World J Gastroenterol 2010;16:3347-3357. https://doi.org/10.3748/wjg.v16.i27.3347
  69. Toshikuni N, Arisawa T, Tsutsumi M. Nutrition and exercise in the management of liver cirrhosis. World J Gastroenterol 2014;20:7286-7297. https://doi.org/10.3748/wjg.v20.i23.7286
  70. Tandon P, Ismond KP, Riess K, Duarte-Rojo A, Al-Judaibi B, Dunn MA, et al. Exercise in cirrhosis: translating evidence and experience to practice. J Hepatol 2018;69:1164-1177. https://doi.org/10.1016/j.jhep.2018.06.017
  71. Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med 2014;44:743-762. https://doi.org/10.1007/s40279-014-0162-1
  72. Damas F, Phillips S, Vechin FC, Ugrinowitsch C. A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med 2015;45:801-807. https://doi.org/10.1007/s40279-015-0320-0
  73. Jones JC, Coombes JS, Macdonald GA. Exercise capacity and muscle strength in patients with cirrhosis. Liver Transpl 2012;18:146-151. https://doi.org/10.1002/lt.22472
  74. Campillo B, Bories PN, Pornin B, Devanlay M. Influence of liver failure, ascites, and energy expenditure on the response to oral nutrition in alcoholic liver cirrhosis. Nutrition 1997;13:613-621. https://doi.org/10.1016/S0899-9007(97)83001-8
  75. Okuda H, Shiratori K. Long-term nutritional assessment and quality of life in patients with cirrhosis taking a late evening snack. J Gastroenterol 2007;42:186-187. https://doi.org/10.1007/s00535-006-2002-z
  76. Matsumura T, Morinaga Y, Fujitani S, Takehana K, Nishitani S, Sonaka I. Oral administration of branched-chain amino acids activates the mTOR signal in cirrhotic rat liver. Hepatol Res 2005;33:27-32. https://doi.org/10.1016/j.hepres.2005.07.001
  77. Gluud LL, Dam G, Les I, Cordoba J, Marchesini G, Borre M, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev 2015;(9):CD001939.
  78. Kumar A, Davuluri G, Silva RNE, Engelen MPKJ, Ten Have GAM, Prayson R, et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology 2017;65:2045-2058. https://doi.org/10.1002/hep.29107
  79. Balasubramaniyan V, Wright G, Sharma V, Davies NA, Sharifi Y, Habtesion A, et al. Ammonia reduction with ornithine phenylacetate restores brain eNOS activity via the DDAH-ADMA pathway in bile duct-ligated cirrhotic rats. Am J Physiol Gastrointest Liver Physiol 2012;302:G145-G152. https://doi.org/10.1152/ajpgi.00097.2011
  80. Rose CF. Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clin Pharmacol Ther 2012;92:321-331. https://doi.org/10.1038/clpt.2012.112
  81. Young NR, Baker HW, Liu G, Seeman E. Body composition and muscle strength in healthy men receiving testosterone enanthate for contraception. J Clin Endocrinol Metab 1993;77:1028-1032. https://doi.org/10.1210/jc.77.4.1028
  82. Schlevogt B, Heinzow HS. Testosterone treatment for patients with sarcopenia and liver cirrhosis. Z Gastroenterol 2017;55:594-595. https://doi.org/10.1055/s-0043-108959
  83. Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomized, phase 2 trial. Lancet Diabetes Endocrinol 2015;3:948-957. https://doi.org/10.1016/S2213-8587(15)00298-3
  84. Han HQ, Zhou X, Mitch WE, Goldberg AL. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int J Biochem Cell Biol 2013;45:2333-2347. https://doi.org/10.1016/j.biocel.2013.05.019
  85. Picardi A, de Oliveira AC, Muguerza B, Tosar A, Quiroga J, Castilla-Cortazar I, et al. Low doses of insulin-like growth factor-I improve nitrogen retention and food efficiency in rats with early cirrhosis. J Hepatol 1997;26:191-202. https://doi.org/10.1016/S0168-8278(97)80026-8
  86. Nardelli S, Lattanzi B, Torrisi S, Greco F, Farcomeni A, Gioia S, et al. Sarcopenia is risk factor for development of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt placement. Clin Gastroenterol Hepatol 2017;15:934-936. https://doi.org/10.1016/j.cgh.2016.10.028
  87. Semsarian C, Wu MJ, Ju YK, Marciniec T, Yeoh T, Allen DG, et al. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signaling pathway. Nature 1999;400:576-581. https://doi.org/10.1038/23054
  88. Bergerson JT, Lee JG, Furlan A, Sourianarayanane A, Fetzer DT, Tevar AD, et al. Liver transplantation arrests and reverses muscle wasting. Clin Transplant 2015;29:216-221. https://doi.org/10.1111/ctr.12506

피인용 문헌

  1. Exercise and physical activity in cirrhosis: opportunities or perils vol.128, pp.6, 2019, https://doi.org/10.1152/japplphysiol.00798.2019
  2. Serum Myostatin Predicts the Risk of Hepatocellular Carcinoma in Patients with Alcoholic Cirrhosis: A Multicenter Study vol.12, pp.11, 2019, https://doi.org/10.3390/cancers12113347
  3. Glucagon Receptor Inhibition Reduces Hyperammonemia and Lethality in Male Mice with Urea Cycle Disorder vol.162, pp.1, 2019, https://doi.org/10.1210/endocr/bqaa211
  4. An Overview of the Molecular Mechanisms Contributing to Musculoskeletal Disorders in Chronic Liver Disease: Osteoporosis, Sarcopenia, and Osteoporotic Sarcopenia vol.22, pp.5, 2021, https://doi.org/10.3390/ijms22052604
  5. Definition of Sarcopenia in Chronic Liver Disease vol.11, pp.4, 2019, https://doi.org/10.3390/life11040349
  6. Association of Physical Activity with the Risk of Hepatocellular Carcinoma in Patients with Chronic Hepatitis B vol.13, pp.14, 2019, https://doi.org/10.3390/cancers13143424
  7. Hyperammonemia in azotemic cats vol.23, pp.8, 2019, https://doi.org/10.1177/1098612x20972039
  8. Identifying areas of improvement in nursing knowledge regarding hepatic encephalopathy management vol.11, pp.5, 2019, https://doi.org/10.1080/20009666.2021.1954784
  9. Systematic computer analysis of ornithine research to identify the most promising trends in therapeutic use - focus on liver function vol.7, 2019, https://doi.org/10.31146/1682-8658-ecg-191-7-30-36
  10. Synbiotics Alleviate Hepatic Damage, Intestinal Injury and Muscular Beclin-1 Elevation in Rats after Chronic Ethanol Administration vol.22, pp.22, 2021, https://doi.org/10.3390/ijms222212547
  11. Psoas Muscle Density Predicts Occurrences of Hepatic Encephalopathy in Patients Receiving Transjugular Intrahepatic Portosystemic Shunts within 1 year vol.45, pp.1, 2019, https://doi.org/10.1007/s00270-021-02961-8