DOI QR코드

DOI QR Code

CCAAT/enhancer-binding protein beta (C/EBPβ) is an important mediator of 1,25 dihydroxyvitamin D3 (1,25D3)-induced receptor activator of nuclear factor kappa-B ligand (RANKL) expression in osteoblasts

  • Jo, Sungsin (Hanyang University Hospital for Rheumatic Diseases) ;
  • Lee, Yun Young (Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Han, Jinil (Hanyang University Hospital for Rheumatic Diseases) ;
  • Lee, Young Lim (Hanyang University Hospital for Rheumatic Diseases) ;
  • Yoon, Subin (Hanyang University Hospital for Rheumatic Diseases) ;
  • Lee, Jaehyun (Hanyang University Hospital for Rheumatic Diseases) ;
  • Oh, Younseo (Hanyang University Hospital for Rheumatic Diseases) ;
  • Han, Joong-Soo (Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University) ;
  • Sung, Il-Hoon (Department of Orthopedic Surgery, Hanyang University Hospital) ;
  • Park, Ye-Soo (Department of Orthopedic Surgery, Hanyang University Hospital) ;
  • Kim, Tae-Hwan (Hanyang University Hospital for Rheumatic Diseases)
  • Received : 2018.07.20
  • Accepted : 2018.10.10
  • Published : 2019.06.30

Abstract

Receptor activator of nuclear factor kappa B ligand (RANKL) expression in osteoblasts is regulated by 1,25-dihydroxyvitamin D3 (1,25D3). CCAAT/enhancer-binding protein beta ($C/EBP{\beta}$) has been proposed to function as a transcription factor and upregulate RANKL expression, but it is still uncertain how $C/EBP{\beta}$ is involved in 1,25D3-induced RANKL expression of osteoblasts. 1,25D3 stimulation increased the expression of RANKL and $C/EBP{\beta}$ genes in osteoblasts and enhanced phosphorylation and stability of these proteins. Moreover, induction of RANKL expression by 1,25D3 in osteoblasts was downregulated upon knockdown of $C/EBP{\beta}$. In contrast, $C/EBP{\beta}$ overexpression directly upregulated RANKL promoter activity and exhibited a synergistic effect on 1,25D3-induced RANKL expression. In particular, 1,25D3 treatment of osteoblasts increased $C/EBP{\beta}$ protein binding to the RANKL promoter. In conclusion, $C/EBP{\beta}$ is required for induction of RANKL by 1,25D3.

Keywords

References

  1. Boyle WJ, Simonet WS and Lacey DL (2003) Osteoclast differentiation and activation. Nature 423, 337-342 https://doi.org/10.1038/nature01658
  2. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289, 1504-1508 https://doi.org/10.1126/science.289.5484.1504
  3. Feng X and Teitelbaum SL (2013) Osteoclasts: New Insights. Bone Res 1, 11-26 https://doi.org/10.4248/BR201301003
  4. Thomas GP, Baker SU, Eisman JA and Gardiner EM (2001) Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. J Endocrinol 170, 451-460 https://doi.org/10.1677/joe.0.1700451
  5. Ormsby RT, Findlay DM, Kogawa M, Anderson PH, Morris HA and Atkins GJ (2014) Analysis of vitamin D metabolism gene expression in human bone: evidence for autocrine control of bone remodelling. J Steroid Biochem Mol Biol 144 Pt A, 110-113 https://doi.org/10.1016/j.jsbmb.2013.09.016
  6. Kim S, Yamazaki M, Zella LA, Shevde NK and Pike JW (2006) Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol 26, 6469-6486 https://doi.org/10.1128/MCB.00353-06
  7. Kitazawa S, Kajimoto K, Kondo T and Kitazawa R (2003) Vitamin D3 supports osteoclastogenesis via functional vitamin D response element of human RANKL gene promoter. J Cell Biochem 89, 771-777 https://doi.org/10.1002/jcb.10567
  8. Ng PK, Tsui SK, Lau CP et al (2010) CCAAT/enhancer binding protein beta is up-regulated in giant cell tumor of bone and regulates RANKL expression. J Cell Biochem 110, 438-446 https://doi.org/10.1002/jcb.22556
  9. Kitazawa R, Mori K, Yamaguchi A, Kondo T and Kitazawa S (2008) Modulation of mouse RANKL gene expression by Runx2 and vitamin D3. J Cell Biochem 105, 1289-1297 https://doi.org/10.1002/jcb.21929
  10. Cattori V, Eckhardt U and Hagenbuch B (1999) Molecular cloning and functional characterization of two alternatively spliced Ntcp isoforms from mouse liver1. Biochim Biophys Acta 1445, 154-159 https://doi.org/10.1016/S0167-4781(99)00029-9
  11. Kitazawa R and Kitazawa S (2002) Vitamin D(3) augments osteoclastogenesis via vitamin D-responsive element of mouse RANKL gene promoter. Biochem Biophys Res Commun 290, 650-655 https://doi.org/10.1006/bbrc.2001.6251
  12. O'Brien CA, Kern B, Gubrij I, Karsenty G and Manolagas SC (2002) Cbfa1 does not regulate RANKL gene activity in stromal/osteoblastic cells. Bone 30, 453-462 https://doi.org/10.1016/S8756-3282(01)00692-5
  13. Notoya M, Otsuka E, Yamaguchi A and Hagiwara H (2004) Runx-2 is not essential for the vitamin D-regulated expression of RANKL and osteoprotegerin in osteoblastic cells. Biochem Biophys Res Commun 324, 655-660 https://doi.org/10.1016/j.bbrc.2004.09.101
  14. Tsushima H, Okazaki K, Ishihara K, Ushijima T and Iwamoto Y (2015) CCAAT/enhancer-binding protein beta promotes receptor activator of nuclear factor-kappa-B ligand (RANKL) expression and osteoclast formation in the synovium in rheumatoid arthritis. Arthritis Res Ther 17, 31 https://doi.org/10.1186/s13075-015-0532-6
  15. Dhawan P, Peng X, Sutton AL et al (2005) Functional cooperation between CCAAT/enhancer-binding proteins and the vitamin D receptor in regulation of 25-hydroxyvitamin D3 24-hydroxylase. Mol Cell Biol 25, 472-487 https://doi.org/10.1128/MCB.25.1.472-487.2005
  16. van de Peppel J and van Leeuwen JP (2014) Vitamin D and gene networks in human osteoblasts. Front Physiol 5, 137 https://doi.org/10.3389/fphys.2014.00137
  17. Armbrecht HJ, Hodam TL, Boltz MA, Partridge NC, Brown AJ and Kumar VB (1998) Induction of the vitamin D 24-hydroxylase (CYP24) by 1,25-dihydroxyvitamin D3 is regulated by parathyroid hormone in UMR106 osteoblastic cells. Endocrinology 139, 3375-3381 https://doi.org/10.1210/endo.139.8.6134
  18. Drocourt L, Ourlin JC, Pascussi JM, Maurel P and Vilarem MJ (2002) Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem 277, 25125-25132 https://doi.org/10.1074/jbc.M201323200
  19. Tanaka T, Yoshida N, Kishimoto T and Akira S (1997) Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J 16, 7432-7443 https://doi.org/10.1093/emboj/16.24.7432
  20. Tominaga H, Maeda S, Hayashi M et al (2008) CCAAT/ enhancer-binding protein beta promotes osteoblast differentiation by enhancing Runx2 activity with ATF4. Mol Biol Cell 19, 5373-5386 https://doi.org/10.1091/mbc.e08-03-0329
  21. Jo S, Koo BS, Lee B et al (2017) A novel role for bone-derived cells in ankylosing spondylitis: Focus on IL-23. Biochem Biophys Res Commun 491, 787-793 https://doi.org/10.1016/j.bbrc.2017.07.079
  22. Jo S, Kang S, Han J et al (2018) Accelerated osteogenic differentiation of human bone-derived cells in ankylosing spondylitis. J Bone Miner Metab 36, 307-313 https://doi.org/10.1007/s00774-017-0846-3
  23. Jo S, Wang SE, Lee YL et al (2018) IL-17A induces osteoblast differentiation by activating JAK2/STAT3 in ankylosing spondylitis. Arthritis Res Ther 20, 115 https://doi.org/10.1186/s13075-018-1582-3
  24. Meednu N, Zhang H, Owen T et al (2016) Production of RANKL by Memory B Cells: A Link Between B Cells and Bone Erosion in Rheumatoid Arthritis. Arthritis Rheumatol 68, 805-816 https://doi.org/10.1002/art.39489
  25. Chakravarti A, Raquil MA, Tessier P and Poubelle PE (2009) Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood 114, 1633-1644 https://doi.org/10.1182/blood-2008-09-178301
  26. Walsh NC, Alexander KA, Manning CA et al (2013) Activated human T cells express alternative mRNA transcripts encoding a secreted form of RANKL. Genes Immun 14, 336-345 https://doi.org/10.1038/gene.2013.29
  27. Vandooren B, Cantaert T, Noordenbos T, Tak PP and Baeten D (2008) The abundant synovial expression of the RANK/RANKL/Osteoprotegerin system in peripheral spondylarthritis is partially disconnected from inflammation. Arthritis Rheum 58, 718-729 https://doi.org/10.1002/art.23290
  28. Choi YH, Kim YJ, Jeong HM, Jin YH, Yeo CY and Lee KY (2014) Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation. FEBS J 281, 3656-3666 https://doi.org/10.1111/febs.12887
  29. Ha YJ, Choi YS, Kang EH et al (2016) SOCS1 suppresses IL-1beta-induced C/EBPbeta expression via transcriptional regulation in human chondrocytes. Exp Mol Med 48, e241 https://doi.org/10.1038/emm.2016.47
  30. Roccisana JL, Kawanabe N, Kajiya H, Koide M, Roodman GD and Reddy SV (2004) Functional role for heat shock factors in the transcriptional regulation of human RANK ligand gene expression in stromal/osteoblast cells. J Biol Chem 279, 10500-10507 https://doi.org/10.1074/jbc.M303727200
  31. Meyer MB, Benkusky NA, Lee CH and Pike JW (2014) Genomic determinants of gene regulation by 1,25-dihydroxyvitamin D3 during osteoblast-lineage cell differentiation. J Biol Chem 289, 19539-19554 https://doi.org/10.1074/jbc.M114.578104
  32. Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47 https://doi.org/10.1093/nar/gkv007
  33. Jo S, Lee H, Kim S et al (2011) Inhibition of PCGF2 enhances granulocytic differentiation of acute promyelocytic leukemia cell line HL-60 via induction of HOXA7. Biochem Biophys Res Commun 416, 86-91 https://doi.org/10.1016/j.bbrc.2011.10.152
  34. Wang SE, Ko SY, Jo S et al (2017) TRPV1 Regulates Stress Responses through HDAC2. Cell Rep 19, 401-412 https://doi.org/10.1016/j.celrep.2017.03.050