DOI QR코드

DOI QR Code

Characteristics of micronized blue ceramic pigments using electric arc furnace dust

제강분진을 활용한 청색 세라믹 안료의 미립화 거동에 관한 연구

  • Kim, Hye-Jin (Ceramic Ware Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Ceramic Ware Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Ceramic Ware Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Nahm, Sahn (Department of Material Science and Engineering, Korea University) ;
  • Kim, Jin-Ho (Ceramic Ware Technology Center, Korea Institute of Ceramic Engineering and Technology)
  • 김혜진 (한국세라믹기술원 도자기술융합센터) ;
  • 한규성 (한국세라믹기술원 도자기술융합센터) ;
  • 황광택 (한국세라믹기술원 도자기술융합센터) ;
  • 남산 (고려대학교 신소재공학부) ;
  • 김진호 (한국세라믹기술원 도자기술융합센터)
  • Received : 2019.05.23
  • Accepted : 2019.06.11
  • Published : 2019.06.30

Abstract

Electric arc furnace dust (EAFD), which is a dust waste generated in the steel manufacturing process, contains heavy metals. Recently, researches of recycling a large amount of valuable metals such as zinc and iron in EAFD are being actively carried out. In this study, EAFD is used as a substitute for cobalt in blue ceramic pigments without any pretreatment. Then, the synthesized blue ceramic pigment using EAFD was micronized and formulated as a ceramic ink for inkjet printer. The particle size distribution, crystal structure and color characteristics during the micronization process were investigated for the development of ceramic ink. $Co_{0.75}Zn(EAFD)_{0.25}Al_2O_4$ ceramic pigments showed excellent blue coloric properties and monomodal distribution through micronization process. The average particle size of $Co_{0.75}Zn(EAFD)_{0.25}Al_2O_4$ ceramic pigments after 3 hours of milling was $0.271{\mu}m$, which is smaller than $0.303{\mu}m$, which is the average particle size of $CoAl_2O_4$ ceramic pigments without EAFD after 5 hours of milling. Especially, it was confirmed that $Co_{0.75}Zn(EAFD)_{0.25}Al_2O_4$ ceramic pigments showed a color difference (${\Delta}E{^*}_{ab}$) value of 5.67, which smaller than ${\Delta}E{^*}_{ab}$ value of $CoAl_2O_4$ during micronization. These results show that EAFD can be used as a raw material for a blue ceramic pigment by replacing expensive cobalt without any pretreatment.

제강분진(Electric arc furnace dust)은 제강공정에서 발생하는 분진폐기물로서 중금속을 다량 포함하고 있어 관리가 매우 중요하다. 제강분진은 아연, 철 등의 유가금속을 다량 함유하고 있기 때문에 최근 이를 재활용하는 연구가 활발하게 진행 중이며, 본 연구에서는 전처리 과정 없이 제강분진을 청색 계열의 세라믹 안료의 코발트를 대체할 수 있는 원료로 사용하였다. 또한 합성된 청색 세라믹 안료를 잉크젯 프린팅용 세라믹 잉크로 개발하기 위해 미립화 과정에서의 입도 분포, 결정 구조 및 발색 특성 변화에 대해 고찰하였다. 제강분진이 첨가된 $Co_{0.75}Zn(EAFD)_{0.25}Al_2O_4$ 세라믹 안료는 우수한 청색 발색 특성을 보이며, 어트리션 밀링(Attrition Milling)을 이용한 미립화 공정을 통하여 단정(monomodal) 분포의 입도를 확보할 수 있었다. 3시간 밀링 후 $Co_{0.75}Zn(EAFD)_{0.25}Al_2O_4$ 세라믹 안료의 평균 입도는 $0.271{\mu}m$로 제강분진이 첨가되지 않은 $CoAl_2O_4$ 세라믹 안료의 5시간 밀링 후의 평균 입도인 $0.303{\mu}m$보다 더욱 작은 것을 확인하였다. 특히, $Co_{0.75}Zn(EAFD)_{0.25}Al_2O_4$ 세라믹 안료는 미립화 공정 중 발색 변화(${\Delta}E{^*}_{ab}$) 값이 5.67로 $CoAl_2O_4$ 보다 작아서 더 우수한 발색 특성을 보이는 것으로 확인되었다. 이러한 결과는 분진폐기물인 제강분진을 어떠한 전처리 과정 없이 고가의 코발트를 대체하여 청색 계열의 세라믹 안료의 원료로 사용할 수 있다는 것을 보여주고 있다.

Keywords

References

  1. N. Menad, J.N. Ayala, F.G. Carcedo, E.R. Ayucar and A. Hernandez, "Study of the presence of fluorine in the recycled fractions during carbotheraml treatment of EAF dust", Waste Manag. 23 (2003) 483. https://doi.org/10.1016/S0956-053X(02)00151-4
  2. F.Q. Xu, S.B. Huang, W.T. Liao, L.C. Wang and G.P. Chang, "Submerged arc furnace process superior to the Waelz process in reducing PCDD/F emission during thermal treatment of electric arc furnace dust", Sci. Total Environ. 466-467 (2014) 598. https://doi.org/10.1016/j.scitotenv.2013.07.074
  3. X. Lin, Z. Peng, J. Yan, Z. Li and T. Jiang, "Pyrometallurgical recycling of electric arc fuanace dust", J. Cleaner Production 149 (2017) 1079. https://doi.org/10.1016/j.jclepro.2017.02.128
  4. A. Zabett and W.K. Lu, "Thermodynamical computations for removal of alkali halides and lead compounds from electric arc furnace dust", Calphad. 32 (2008) 535. https://doi.org/10.1016/j.calphad.2008.05.001
  5. P. Oustadakis, P.E. Tsakiridis, A. Katsiapi and S.A. Leonardou, "Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): Part I: Characterization and leaching by diulted sulphuric acid", J. Hazard. Mater. 179 (2010) 1. https://doi.org/10.1016/j.jhazmat.2010.01.059
  6. C.M.F. Vieira, R. Sanchez, S.N. Monteiro, N. Lalla and N. Quaranta, "Recycling of electric arc furnace dust into red ceramic", J. Mater. Res. Technol. 2 (2013) 88. https://doi.org/10.1016/j.jmrt.2012.09.001
  7. R.M. Khattab, M.M.e. Seleman and M.F. Zawrah, "Assessment of electric arc furnace dust: Powder characterization and its sinterability as ceramic product", Ceram. Int. 43 (2017) 12939. https://doi.org/10.1016/j.ceramint.2017.06.192
  8. A. Nazari, A. Shafyei and A. Saidi, "Recycling of electric arc furnace dust into glass-ceramic", Mater. Chem. Phys. 205 (2018) 436. https://doi.org/10.1016/j.matchemphys.2017.11.045
  9. B.R. Son, J.H. Kim, K.S. Han, W.S. Cho and K.T. Hwang, "Synthesis and characteristics of blue ceramic pigments using electric arc furnace dust", J. Kor. Ceram. Soc. 51 (2014) 184. https://doi.org/10.4191/kcers.2014.51.3.184
  10. G.L. Gungor, A. Kara, D. Gardini, M. Blosi and C. Zanelli, "Ink-jet printability of aqueous ceramic inks for digital decoration of ceramic tiles", Dyes Pigments 127 (2016) 148. https://doi.org/10.1016/j.dyepig.2015.12.018
  11. J.H. Kim, H.G. Noh, U.S. Kim, W.S. Cho, J.H. Choi and Y.O. Lee, "Recent Advances in the Ink-Jet Printing Ceramic Tile using Colorant Ceramic ink", J. Korean Ceram. Soc. 50 (2013) 498. https://doi.org/10.4191/kcers.2013.50.6.498
  12. J.W. Kwon, J.H. Lee, K.T. Hwang, J.H. Kim and K.S. Han, "Formulation and evaluation of glass-ceramic ink for digital ink-jet printing", Korean J. Mater. Res. 27 (2017) 583. https://doi.org/10.3740/MRSK.2017.27.11.583
  13. J.H. Lee, H.J. Hwang, J.W. Kwon, J.H. Kim, K.T. Hwang and K.S. Han, "Micronization of ceramic pigments for digital ink-jet printing process", Korean J. Mater. Res. 27 (2017) 82. https://doi.org/10.3740/MRSK.2017.27.2.82
  14. P.M.T. Cavalcante, M. Dondi, G. Guarini, M. Raimondo and G. Baldi, "Colour performance of ceramic nano-pigments", Dyes Pigments 80 (2009) 226. https://doi.org/10.1016/j.dyepig.2008.07.004
  15. D.H. Jang, D.G. Kim and J.H. Moon, "Influence of fluid physical properties on ink-jet printability", Langmuir 25 (2009) 2629. https://doi.org/10.1021/la900059m
  16. M.E. Perez-Bernal, R.J. Ruano-Casero and V. Rives, "Effect of added zinc on the properties of cobalt-containing ceramic pigments prepared from layered double hydroxides", J. Solid State Chem. 182 (2009) 2566. https://doi.org/10.1016/j.jssc.2009.07.011
  17. K.C. Lee, J.W. Yoon, J.H. Kim, K.S. Han and K.T. Hwang, "Preparation and characterization of $CoAl_2O_4$ blue ceramic nano pgiments by attrition milling", J. Kor. Cryst. Growth Cryst. Technol. 23 (2013) 255. https://doi.org/10.6111/JKCGCT.2013.23.5.255
  18. G. Buxbaum, "Industrial Inorganic Pigments", Wiley-VCH, Germany (1998) 289.
  19. G.L. Gungor, A. Kara, M. Blosi, D. Gardini and M. Dondi, "Micronizing ceramic pigments for inkjet printing: Part I. Grindability and particle size distribution", Ceram. Int. 41 (2015) 6498. https://doi.org/10.1016/j.ceramint.2015.01.093
  20. H. Yungevis and E. Ozel, "Effect of the milling process on the properties of $CoFeO_4$ pigment", Ceram. Int. 39 (2013) 5503. https://doi.org/10.1016/j.ceramint.2012.12.062
  21. R.S. Berns, "Billmeyer and Saltzman's Principles of Color Technology", 3rd ed. (John Wiley & Sons, USA, 2000). p. 72.