DOI QR코드

DOI QR Code

Anti-inflammatory and Antioxidant Effects of Hot Water Extracts from Kaempferia Galanga L

삼내자 열수추출물의 항산화 및 항염 효과

  • Chan, Ching Yuen Venus (Department of Beauty Art, Graduate School of Seokyeong University) ;
  • Lee, Ji-An (Department of Beauty Art, Graduate School of Seokyeong University)
  • Received : 2019.05.07
  • Accepted : 2019.06.20
  • Published : 2019.06.28

Abstract

In this study, we investigated the possibility of Kaempferia Galanga(KG) hot water extract on the antioxidant, cytotoxic and anti-inflammatory efficacy as a cosmetic ingredient. Antioxidant effects were evaluated based on DPPH and ABTS radical scavenging activity, FRAP assay, and total polyphenol contents. The MTT assay was used to confirm the cell toxicity in mouse macrophage RAW264.7 cells. Anti-inflammatory effects were also investigated in LPS-induced RAW264.7 cells by measuring secretion of NO, $TNF-{\alpha}$ and iNOS, $TNF-{\alpha}$ mRNA expression level. As a result, DPPH and ABTS radical scavenging activities were increased in a concentration-dependent manner. The ferric reducing antioxidant power(FRAP) was the highest at 5 mg/mL as 24.5 uM. The measurements of total polyphenol content was $1.28{\pm}0.064mg\;GAE/g$. The cytotoxicity of the KG extract results showed no cytotoxicity at concentration of 0.625 to 2.5 mg/mL. In addition, the extract of KG significantly suppressed the LPS-induced nitrite, $TNF-{\alpha}$ secretion and the mRNA expression of iNOS, $TNF-{\alpha}$ in RAW264.7 cells. Taken together, these data suggest that the KG hot water extracts can be used as a safe and functional cosmetic raw material.

본 연구의 목적은 삼내자(Kaempferia Galanga) 열수추출물의 항산화, 세포독성, 항염 효능을 조사하여 화장품 성분으로서 활용 가능성을 알아보고자 하였다. 항산화 활성 평가를 위해 DPPH, ABTS 라디컬 소거능 활성, FRAP 환원력, 총폴리페놀 함량을 측정하였다. 쥐의 대식세포인 RAW264.7 세포를 대상으로 MTT assay를 수행하여 세포독성을 확인하였다. 항염 효능을 알아보기 위해 LPS로 유도된 RAW264.7 세포에서 nitric oxide(NO), $TNF-{\alpha}$ 분비 및 iNOS, $TNF-{\alpha}$ mRNA 발현 수준을 조사하였다. 그 결과 DPPH와 ABTS 라디칼 소거능은 농도 의존적으로 라디칼 소거 활성이 증가하였다. FRAP 값은 5 mg/mL에서 24.5 uM로 가장 높게 나타났으며, 총폴리페놀 함량은 $1.28{\pm}0.064mg\;GAE/g$로 나타났다. KG 추출물 농도 0.625~2.5 mg/mL에서 세포독성은 보이지 않았다. 또한 RAW264.7 세포에서 LPS 유도에 의한 NO, $TNF-{\alpha}$ 분비 그리고 iNOS, $TNF-{\alpha}$의 mRNA 발현이 KG 추출물에 의해 유의하게 감소하였다. 이러한 결과는 삼내자 열수추출물이 안전하고 효과적인 화장품 원료로서의 활용 가능성이 있음을 보여준다.

Keywords

JKOHBZ_2019_v9n6_218_f0001.png 이미지

Fig. 1. Effect of KG extracts on the DPPH radical scavenging activity. Results are the mean±S.D. from three independent experiments. *p<0.05 compared to the negative control.

JKOHBZ_2019_v9n6_218_f0002.png 이미지

Fig. 2. Effect of KG extracts on the ABTS radical scavenging activity. Results are the mean±S.D. from three independent experiments. *p<0.05; **p<0.001 compared to the negative control.

JKOHBZ_2019_v9n6_218_f0003.png 이미지

Fig. 3. Ferric reducing antioxidant power assay of KG extracts. Results are the mean±S.D. from three independent experiments. *p<0.05 compared to the negative control.

JKOHBZ_2019_v9n6_218_f0004.png 이미지

Fig. 4. Effect of KG extracts on RAW264.7 cell viability. Cells were treated with various concentration of KG for 24 h. Cell viability was evaluated using the MTT assay. Results are the mean±S.D. from three independent experiments. *p<0.05; **p<0.001 compared to the negative control.

JKOHBZ_2019_v9n6_218_f0005.png 이미지

Fig. 5. Effect of KG extracts on the NO production and iNOS protein expression in LPS-induced RAW264.7 cells. Cells were incubated with LPS in the presence or absence of KG for 24 h. The NO concentration in medium was determined by Griess reagent assay(a). The whole cell lysates were then subjected to Western blot analysis(b). Results are the mean±S.D. from three independent experiments. *p<0.05 compared to the negative control.

JKOHBZ_2019_v9n6_218_f0006.png 이미지

Fig. 6. Effect of KG extracts on TNF-α secretion in LPS-induced RAW264.7 cells. Cells were incubated with LPS in the presence or absence of KG for 24 h. Results are the mean±S.D. from three independent experiments. *p<0.05 compared to the negative control.

JKOHBZ_2019_v9n6_218_f0007.png 이미지

Fig. 7. Effect of KG extracts on iNOS and TNF-α gene expression in LPS-induced RAW264.7 cells. Cells were incubated with LPS in the presence or absence of KG for 12 h. iNOS(a) and TNF-α (b) mRNAlevels were determined using real-time PCR. Results are the mean±S.D. from three independent experiments. *p<0.05; **p<0.001 compared to the negative control.

Table 1. TNF-α, iNOS and GAPDH primer

JKOHBZ_2019_v9n6_218_t0001.png 이미지

Table 2. Total polyphenol contents (TPC) of KG extracts.

JKOHBZ_2019_v9n6_218_t0002.png 이미지

References

  1. Y. M. Seo, L. Shuai & E. K. Kim. (2015). The Influence of National image, Brand Image and Countryof-Origin Image on Purchase attitude and Purchase Intention-Focus on the purchase of korean cosmetics which applied a high and/or convergene technology in chinese consumers. Journal of Digital Convergence, 13(6), 69-79. https://doi.org/10.14400/JDC.2015.13.6.69
  2. M. R. Yeom, J. O. Park & D. Y. Jung. (2016). Analysis of Cosmetics App Smart UI convergence Design in Mobile Environments. Journal of the Korea Conergence Society, 7(2), 13-17.
  3. L. Baumann. (2007). Skin ageing and its treatment. Journal of Pathology, 211, 241-251. https://doi.org/10.1002/path.2098
  4. H. R. Park & K. Y. Kim. (2017). Inhibition Effect of $TNF-{\alpha}$, $IL-1{\alpha}$ Production $TNF-{\alpha}$, $IL-1{\alpha}$ mRNA Expression from Chenopodium album Ethanol Extract, Journal of the Korean Society of Cosmetology, 23(5), 971-977.
  5. J. H. Seo, Y. J. Lee, Y. I. Jo, J. Y. Ko, M. J. Mun, K. H. Park & S. E. Choi. (2018). Anti-fungal, anti-oxidant, and anti-inflammatory effects of supercritical fluid extracts from Ulmus daidiana. Journal of the Korea Convergence Society, 9(8), 225-233. https://doi.org/10.15207/JKCS.2018.9.8.225
  6. H. J. Kim. (2016). Convergence study on the antioxidant effect of crude extracts of Nelumbo nucifera Gaertner. Journal of the Korea Convergence Society, 7(3), 53-58. https://doi.org/10.15207/JKCS.2016.7.3.053
  7. Y. R. Wang, E. S. Kim & J. A. Lee. (2018). The study of Antioxidant and Anti-inflammatory Effects of Notoginseng Root (NGR) Hot Water Extracts. Journal of the Korean Society of Cosmetology, 24(5), 1014-1020.
  8. M. J. Kim, J. H. Kim, S. H. Lee, E. J. Cho & H. Y. Kim. (2018). Determination of Radical Scavenging Activity of Aster yomena (Kitam.) Honda. Journal of the Korea Academia-Industrial, 19(9), 402-407.
  9. J. H. Kim & D. Y. Kim. (2017). Anti-inflammatory Effect of Ethanol Extracts from Dioscorea bulbifera. Journal of the Korean Society of Beauty And Art, 17(1), 91-102. https://doi.org/10.18693/jksba.2016.17.1.91
  10. K. N. Min, G. H. lee, S. J. Park & T. B. Choe. (2019). Physiological activity and efficacy of cosmetic products in bio-converted soybean embryo extract. Journal of the Korea Convergence Society, 10(3), 211-220. https://doi.org/10.15207/JKCS.2019.10.3.211
  11. M. I. Umar, M. Z. B. Asmawi, A. Sadikun, R. Altaf & M. A. Iqbal. (2011). Phytochemistry and medical properties of Kaempferia galanga L. (Zingiberaceae) extracts. African journal of Pharmacology, 5(14), 1638-1647. https://doi.org/10.5897/AJPP11.388
  12. H. J. Shetu, K. T. Trisha, S. A. Sikta, R. Anwar, S. S. B. Rashed & R. R. Dash. (2018). Pharmacological importance of Kaempferia galanga (Zingiberaceae): A mini review. International Journal of Research in Pharmacy and Pharmaceutical Sciences, 3(3), 32-39.
  13. C. Mekseepralard, N. Kamkaen, & J. M. Wilinson. (2010). Antimicrobial and Antioxidant Activities of Traditional Thai Herbal Remedies for Aphthous Ulcers. Phytotherapy Research, 24, 1514-1519. https://doi.org/10.1002/ptr.3158
  14. A. Amuanuta, T. Plengsuriyakarn, & K. Na-Bangchang. (2017). Anticholangiocarcinoma activity and toxicity of the Kaemphferia galanga Linn. Rhizome ethanolic extract. BMC Complementary and Alternative Medicine, 17(1), 1-11. https://doi.org/10.1186/s12906-016-1505-2
  15. P. C. Jagadish, K. P. latha, J. Mudgal, & G. K. Nampurath. (2016). Extraction, characterization and evaluation of Kaemphferia galanga L. (Zingiberaceae) rhizome extracts against acute and chronic inflammation in rats. Journal of Ethnopharmacology, 194, 434-439. https://doi.org/10.1016/j.jep.2016.10.010
  16. M. I. Umar, M. Z. Asmawi, A. Sadikun, A. M. S. A. Majid, F. S. R. Al-Suede, L. E. A. Hassan, R. Altaf & M. B. K. Ahamed. (2014). Ethyl-p-methoxycinnamte isolated from kaempferia galanga inhibits inflammation by suppressing interleukin-1, tumor necrosis factor-${\alpha}$, and angiogenesis by blocking endothelial functions. CLINICS, 69(2), 134-144. https://doi.org/10.6061/clinics/2014(02)10
  17. M. H. In, B. K. Jeon, Y. J. Mun & W. H. Woo. (2016). Hexane extract of Kaempferia galanga L. suppresses melanogenesis. Journal of physiology & pathology in Korean Medicine, 30(1), 47-53. https://doi.org/10.15188/kjopp.2016.02.30.1.47
  18. H. J. Ko et al. (2014). Hypopigmentary effects of ethyl P-methoxycinnamate isolated from Kaempferia galanga. Phytotherapy Research, 28, 274-279. https://doi.org/10.1002/ptr.4995
  19. J. W. Yoon, J. M. Han, H. J. Yoon & W. S. Ko. (2013). Inhibitory effects of methanol extract of Kaempferia galanga on melanogenesis in B16/F10 melanoma cells. The Journal of Korean Medical Ophthalmology & Otolaryngology & Dermatology, 26(1), 1-18.
  20. A. M. Vittalrao, T. Shanbhag, M. Kumari K, K. L. Bairy & S. Shenoy. (2011). Evaluation of antiinflammatory and analgesic activities of alcoholic extract of Kaempferia galanga in rats. Indian Journal of Physiology and Pharmacology, 55(1), 13-24.
  21. H. Riasari, R. Rachmaniar & Y. Febriani. (2016). Effectiveness of anti-inflammatory plaster from kencur(Kaempferia galanga L.) rhizome ethanol extract. International Journal Pharmaceutical Sciences and Research, 7(4), 1746-1749.
  22. Y. Nie, L. K. Liana & E. Evacuasiany. (2012). The effect of kencur's rhizome ethanol extract(Kaempferia galanga L.) against gastric mucosal to swiss webster mice in induced by asetosal. Journal Medika Planta, 2(1), 77-84.
  23. M. S. Blois. (1958). Antioxidant determinations by the use of a stale free radical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
  24. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang & C. R. Evans. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  25. I. F. Benzie & J. J. Strain. (1996). The ferric reducing ability of plasma(FRAP) as measurement of "antioxidant power" The FRAP assay. Analytical Biochemistry, 239, 70-6. https://doi.org/10.1006/abio.1996.0292
  26. AOAC. (1980). Official Methods of Analysis. 13th ed., Association of Official Analytical Chemists, Washington D.C, USA 376-384.
  27. A. Murakami et al. (2000). Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes. Cancer Letters, 149, 115-123. https://doi.org/10.1016/S0304-3835(99)00351-1
  28. W. J. Hossen, W. W. Yang, D. W. Kim, A. Aravinthan, J. H. Kim & J. Y. Cho, (2017). Thymoquinone: An IRAK1 inhibitor with in vivo anti-inflammatory activities. Scientific reports, 7, 42995. https://doi.org/10.1038/srep42995
  29. M. J. Kim, J. H. Kim, S. Lee, E. J. Cho & H. Y. Kim. (2018). Determination of Radical Scavenging Activity of Aster yomena(Kitam.) Honda. Journal of the Korea Academia-Industrial, 19(9), 402-407.
  30. E. W. C. Chan et al. (2008). Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food chemistry, 109, 477-483. https://doi.org/10.1016/j.foodchem.2008.02.016
  31. H. Ali, R. Yesmin, M. A. Satter, R. Habib & T. Yeasmin. (2018). Antioxidant antineoplastic activities of methanolic extract of Kaempferia galanga Linn. Rhizome against Ehrlich ascites carcinoma cells. Journal of King Saud University-Science, 30(3), 386-392. https://doi.org/10.1016/j.jksus.2017.05.009
  32. J. S. Moon, J. H. Lee & Y. B. Kim. (2017). Study of antioxidation activity and melanocyte effect of Pueraria Lobata Root Extract. Journal of Korean Oil Chmist's Society, 34(2), 418-425.
  33. J. M. Awika, L. W. Fooney, K. Wu, R. L. Prior & L. Cisneros-Zevallos. (2003). Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. Journal of agricultural and food chemistry, 51(23), 665-6662.
  34. E. K. Lee & S. H. Jung. (2018). Anti-inflammatory and antioxidant effect of natural herbs mixture in RAW264.7 cell line. Journal of the Korean Society of Cosmetology, 24(1), 42-50.
  35. D. S. Lee, C. S. Yoon, Y. T. Jung, J. H. Yoon, Y. C. Kim & H. C. Oh. (2016). Marine-Derived Secondary Metabolite, Griseusrazin A, Suppresses Inflammation through Heme Oxygenase-1 Induction in Activted RAW264.7 Macrophages. Journal of Natural Products, 79(4), 1105-111. https://doi.org/10.1021/acs.jnatprod.6b00009
  36. S. H. Kim et al. (2015). The dietary flavonoid kaempferol mediated anti-inflammatory response via the Src, Syk, IRAK1, and IRAK4 molecular targets. Mediators of Inflammation, 2015, Article ID 904142, 15 pages.