
INTRODUCTION

Ossification of the posterior longitudinal ligament (OPLL) 
can be defined as an ectopic ossification (calcification) in 
the tissues of spinal ligament showing a hyperostotic condi-
tion (Matsunaga and Sakou, 2012; Kim et al., 2018). OPLL is 
developed mostly in the cervical spine (about 70%), as well 
as in the thoracic and lumbar spine, predominantly in males 
(2 times more prevalent than in females) (Saetia et al., 2011; 
Kawaguchi et al., 2013). The clinical presentations of OPLL 
are majorly myelopathy and/or radiculopathy, with serious 
neurological pathology resulting in paralysis of extremities and 
disturbances of motility (motor function) lowering the quality 
of life. These manifestations are due to a reduction of volume 
of the spinal canal and the compression and injury of spinal 
cord by hardened ligament after ossification (Koyanagi et al., 
2003; Chikuda et al., 2011; Kim et al., 2017). OPLL is known 

to be an idiopathic and multifactorial disease, which familial 
inheritance (genetic factors) and non-genetic factors including 
diet, obesity, physical strain on the posterior longitudinal liga-
ment, age, and diabetes mellitus, are involved into the patho-
genesis (Iwasaki et al., 2004; Kobashi et al., 2004; Stapleton 
et al., 2011; Ikegawa, 2014; Kawaguchi et al., 2016). A multi-
tude of research on OPLL has been performed in Japan, since 
the prevalence of OPLL has been reported to be 2.0-4.0% 
in Japan, 1.0-3.0% in other Asian countries including Korea 
and China, and 0.1-1.7% in North America and continental 
Europe (Mori et al., 2014; Yoshimura et al., 2014; Fujimori et 
al., 2015). To date, surgical management by decompressing 
the spinal cord is regarded as standard treatment for OPLL, 
although there might be the risk of development of reprogres-
sion of ossification (Abiola et al., 2016; Shin et al., 2017; Beom 
and Seo, 2018; Lee et al., 2018). At the same time, the molec-
ular pathogenesis and efficient therapeutic strategy, especially 
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pharmacotherapy and/or preventive intervention, of OPLL has 
not been clearly elucidated and suggested. Therefore, in this 
review, we tried to give an overview to the present research 
results on OPLL, in order to shed light on the potential phar-
macotherapy based on the molecular pathophysiologic aspect 
of OPLL, especially on the genetic/genomic factors involved 
into the etiology of OPLL.

CURRENT SURGICAL AND PHARMACOLOGICAL 
MANAGEMENT OF OPLL

Surgical management of OPLL
In the current medical practices, OPLL-induced myelopathy 

in the cervical spine is managed by anterior decompression or 
posterior decompression. The anterior decompression means 
that the operational removal of ossified lesion, via the anterior 
side of the spine. However, it is technically difficult, since the 
posterior longitudinal ligament exists in front of the spinal cord. 
Thus, the posterior approach is carried out to achieve the de-
compression of spinal cord, although the complications as-
sociated with decompression surgery including postoperative 
re-progression of ossification should be overcome (Zeidman 
et al., 1997; Shin et al., 2011, 2017; Beom and Seo, 2018; Lee 
et al., 2018). 

Pharmacological and non-surgical management of OPLL
The current non-surgical management of OPLL consists of 

physical therapy, observation, and administration of oral anal-
gesics (Matsunaga et al., 2004; Pham et al., 2011). Pain and 
numbness, the symptoms of OPLL, make the patients ask to 
resolve them promptly. This kind of neuropathic pain can be 
managed by pharmacotherapy. Nonsteroidal anti-inflammato-
ry drugs (NSAIDs), opioids, antidepressants, local anesthet-
ics, mecobalamin, and anticonvulsants have been utilized for 
controlling neuropathic pain (Furukawa, 2008; Tu et al., 2015; 
Liu et al., 2017). However, these drugs are used just for symp-
tomatic relief. Therefore, the development of a novel agent for 
curing and/or preventing the myelopathy due to ossification 
of spinal ligament based upon targeting the molecular patho-
physiology of OPLL is essentially required (Table 1).

MOLECULAR PATHOPHYSIOLOGY OF OPLL

The pathogenesis of OPLL has not been clearly under-
stood. Although both genetic and environmental (non-genetic) 

factors are reported to be associated with the occurrence of 
OPLL, this disease shows an intense genetic predisposition 
(Wang et al., 1999; Okamoto et al., 2004; Furukawa, 2006; 
Ikegawa, 2014; Liang et al., 2018). 

Genetics of the susceptibility to OPLL
A multitude of study found the associated genetic loci linked 

to susceptibility to OPLL. Karasugi et al. (2013) reported that 
OPLL-associated loci showing potential linkages at 20p12, 
16q24, 7q22, 2p22-2p24, and 1p21 were suggested as a re-
sult of a genome-wide linkage study using 214 siblings-pairs 
of OPLL. Also, 6p21.1, 8q23.1, 8q23.3, 12p11.22, 12p12.2, 
and 20p12.3 were identified as OPLL-susceptibility loci based 
on a result of a genome-wide association study (GWAS) (Na-
kajima et al., 2014). GWAS for OPLL provided substantial in-
formation on chromosomal positions associated with OPLL, 
although the causal genes of OPLL and functional genomic 
positions are required to be connected closely by the efficient 
target gene association studies. The prevalence of OPLL in 
cervical spine was 26.15% in the parents and 28.89% in the 
siblings of probands from 347 families with cervical OPLL, 
which are higher than those in the general population (Ter-
ayama, 1989). The siblings sharing identical human leukocyte 
antigen (HLA) haplotypes from families of 24 OPLL patients 
showed the higher prevalence of OPLL and a significant link-
age on D6S276 with OPLL (Matsunaga et al., 1999). Tanaka 
et al. (2003) suggested that another potential genetic factor 
of OPLL, collagen 6A1 (COL6A1), exists on 21q (D21S1903). 
In cartilage and bone, the amount of transforming growth 
factor-β (TGF-β) is relatively high and there are many target 
cells for TGF-β. By autocrine and paracrine secretions, TGF-β 
plays a pivotal role in keeping and proliferating mesenchy-
mal stem cells and progenitors of osteoblasts (Bonewald and 
Mundy, 1990; Chen et al., 2012). Therefore, the TGF-β genes, 
especially TGF-β1, are considered the major candidates pro-
moting the susceptibility to OPLL, because of its significance 
in controlling bone metabolism (Bonewald and Dallas, 1994; 
Kamiya et al., 2001; Kawaguchi et al., 2003). It is known that 
the TGF-β superfamily consists of TGF-βs, Activin, bone mor-
phogenetic proteins (BMPs) and Nodal, totally forty or more 
members. In mammalian development, intracellular signaling 
of TGF-β/BMPs in concert with MAPK, FGF, Notch, Wnt, and 
Hedgehog signaling pathways are very important in the forma-
tion of bone (Chen et al., 2012). There are many reports on 
single nucleotide polymorphism (SNP) in TGF-β genes and 
their significance in the prevalence of OPLL. However, to date, 
the results of the studies are not consistent and more inves-
tigations are needed for reaching the conclusion (Kamiya et 
al., 2001; Kawaguchi et al., 2003; Horikosi et al., 2006; Han 
et al., 2013; Jekarl et al., 2013). Collagen is known to play an 
important role during the development of cartilage and bone. 
Several genes encoding collagen, COL6A1, COL11A2, and 
COL17A1, have been reported to be associated with OPLL. 
Diverse pathological phenotypes of connective tissues might 
be provoked by aberrant expressions and/or mutations of col-
lagen genes (Tsukahara et al., 2005; Kong et al., 2007; Kim 
et al., 2014). Similar to the case of TGF-β genes, many stud-
ies on SNPs in genes of collagen and their association in the 
occurrence of OPLL have been performed. Some of them 
suggested that a specific gene is linked to the prevalence of 
OPLL, although the relevance of these SNPs of genes encod-
ing collagen in the etiology of OPLL is still not obvious (Koga 

Table 1. The management of OPLL

Surgical management Anterior decompression;  
Operational removal of ossified 
lesion via the anterior side of the 
spine

Posterior decompression;  
Posterior approach carried out 
to achieve the decompression of 
spinal cord

Pharmacological and  
non-surgical management

Physical therapy (and observation) 
Administration of oral analgesics
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et al., 1998; Sakou et al., 2000; Maeda et al., 2001; Wei et 
al., 2014). Ectonucleotide Pyrophosphatase/Phosphodiester-
ase 1 (ENPP1) is a type II transmembrane metalloenzyme. It 
is known to control the calcification of soft tissue and bone, 
as an inhibitor of calcification by producing inorganic bispho-
sphate (PPi) (Sun and Mauerhan, 2012). An animal model for 
human OPLL, the tiptoe walking (twy) mice, shows a sponta-
neous development of abnormal ossification of the posterior 
longitudinal spinal ligament (Hosoda et al., 1981; Uchida et 
al., 2012). ENPP1 was reported to be the responsible gene for 
phenotypes of twy mice (Okawa et al., 1998). The four SNPs 
in ENPP1 have been reported to be linked to the development 
and/or severity of OPLL in humans (Koshizuka et al., 2002; 
Tahara et al., 2005; Horikoshi et al., 2006). He et al. (2013) 
reported that patients with a specific SNP in ENPP1 showed a 
good prognosis after surgery for decompression of the spinal 
cord. BMPs, a group of TGF-β family, are known to induce the 
differentiation of chondrocytes and osteoblasts in the devel-
opment of cartilage and bone. Intracellular signaling of Smad 
provoked by BMP has been known to regulate Msx2, Runx2, 
Dlx5/6, Osterix and Sox9, the transcriptional factors required 
for the chondrogenesis and osteoblastogenesis (Marcellini et 
al., 2012; Shi et al., 2013; Rahman et al., 2015; Sanchez-Duff-
hues et al., 2015). In the tissues of ligament affected by OPLL, 
receptors for BMPs are expressed in higher levels than in the 
normal ligament tissues, suggesting that BMP might mediate 
the occurrence of OPLL (Yonemori et al., 1997). The SNPs in 
genes of BMPs have been studied in relation to the develop-
ment of OPLL (Wang et al., 2018). A specific SNPs of BMP2 
was found in the OPLL patients with higher rate than in the 
normal population (Wang et al., 2008; Yan et al., 2013; Li et 
al., 2014) and significantly linked to strengthened susceptibil-
ity to OPLL (Ren et al., 2012). Taken together, it is essentially 
required to characterize the SNPs in the ligament tissues of 
OPLL from the big size of samples systematically, since the 
majority of studies on various genes linked to susceptibility to 
OPLL have been based upon the small number of sequence 
variants and small sample sizes. Moreover, the evident func-
tional relationship between the SNPs associated with OPLL 
and the progression and occurrence of the disease should be 
clarified through future study (Table 2). 

Physical stress and OPLL
Interestingly, physical (mechanical) stress to the tissues 

of ligament, especially a cyclical stretch, has been reported 
to increase the expression levels of various genes including 
osteopontin, alkaline phosphatase (ALP), endothelin-1, BMP-
2, Type I collagen, Cbfa1 (an osteoblast-specific transcription 

factor), BMP-4, osteocalcin, BMP receptors, and integrin β1 
and induce OPLL development and its progression (Iwasaki 
et al., 2004; Furukawa, 2006; Iwasawa et al., 2006). Physical 
stress also controlled the expression of a specific subtype of 
purinoceptors in OPLL cells and stimulated the progression of 
OPLL (Sawada et al., 2008). Ohishi et al. (2003) reported that 
the synthesis of prostaglandin in the cells of ligament of OPLL 
patients increased by physical stress and it stimulated the dif-
ferentiation of osteoblasts. Overexpression of vimentin, one of 
the filament proteins, in osteoblasts was reported to inhibit the 
differentiation of osteoblasts resulting in suppression of min-
eralization. Physical stress decreased the expression level of 
vimentin and stimulated the progression of OPLL (Shapiro et 
al., 1995; Zhang et al., 2014). Physical stress increased the 
expression level of connexin 43 (Cx43, gap junction alpha-1 
protein), the protein provoking OPLL, via p38 MAPK and ERK 
signaling pathway in spinal ligament fibroblasts from OPLL pa-
tients (Yang et al., 2011; Chen et al., 2014, 2016). 

Biomarkers of OPLL
Serum levels of insulin, leptin, and osteocalcin, a bone-for-

mation marker, are positively associated with the occurrence 
of OPLL (Akune et al., 2001; Sugimori et al., 2003; Ikeda et al., 
2011). In the ligaments of OPLL, the levels of nebulin-related 
anchoring protein and osteoglycin increased, while those of 
biliverdin reductase B, alpha-1 collagen VI, NAD(P) depen-
dent steroid dehydrogenase-like, and carbonic anhydrase 
I decreased (Zhang et al., 2015). Sclerostin and dickkopf-1 
(DKK1) are known to exert a significant activity on the forma-
tion of bone and sclerostin levels in serum are higher in the 
male OPLL patients than those in the normal people (Morvan 
et al., 2006; Modder et al., 2011; Szulc et al., 2013). It was 
reported that serum levels of DKK1 were negatively correlated 
in the patients with OPLL (Kashii et al., 2016). Also, the se-
rum levels of osteocalcin and carboxyterminal propeptide of 
human type 1 procollagen (PICP) are higher in patients with 
OPLL than in normal people (Matsui et al., 1996) (Table 3).

OPLL and mesenchymal stem cells (MSCs) 
MSCs are defined as multipotent progenitor cells differen-

tiating to diverse types of cells, including chondrocytes and 
osteoblasts. MSCs derived from spinal ligaments may differ-
entiate to chondrogenic, adipogenic, or osteogenic cells and 
play a pivotal role in abnormal ossification process (Asari et 
al., 2012; Medici and Olsen, 2012; Nelson et al., 2012; No-
mura et al., 2013). The transcription factors including Runx2, 
Sox9, Osterix, and Msx2 have been reported to control chon-
drogenesis and osteogenesis from MSCs (Nishimura et al., 
2012). Also, the expression levels of parathyroid-related pep-
tide hormone (PTHrP), Sox9, and Indian hedgehog (Ihh) in 
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Table 2. The major genes associated with the susceptibility to OPLL

Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 
(ENPP1), Integrin β1

Transforming growth factor-β1 (TGF-β1), Endothelin-1
Bone morphogenetic proteins (BMPs)-2, Bone morphogenetic 

proteins (BMPs)-4
COL6A1, COL11A2, and COL17A1, Type I collagen
Osteopontin, Alkaline phosphatase (ALP), Osteocalcin
Cbfa1 (an osteoblast-specific transcription factor),  

BMP receptors

Table 3. The Biomarkers of OPLL

Positively 
associated 
biomarkers

Insulin, Leptin, Osteocalcin, Osteoglycin, 
Nebulin-related anchoring protein, 
Sclerostin

Negatively 
associated 
biomarkers

Biliverdin reductase B, Dickkopf-1 
(DKK1), Carbonic anhydrase I, Alpha-1 
collagen VI, NAD(P) dependent steroid 
dehydrogenase-like 
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the tissues of OPLL were reported to be increased than in 
the normal ligament tissues (Sugita et al., 2013). Therefore, 
through future investigations, it is urgently needed to elucidate 
the exact role of aberrant intracellular signaling in MSCs de-
rived from spinal ligament, during the process of development 
and progression of OPLL. 

OPLL and dietary factors
Up to now, there are few reports on the relationship be-

tween dietary habits and the development of OPLL. Wang et 
al. (1999) reported that, in Taiwan, a high-salt diet through in-
taking much amount of pickled foods and low intake of meat 
daily are positively associated with the occurrence of OPLL. 
Okamoto and his colleagues also reported that, in Japan, 
frequent intake of chicken and soy foods and frequent con-
sumption of pickles were associated negatively and positively 
with the development of OPLL, respectively (Okamoto et al., 
2004). The exact relationship between diets and the occur-
rence of OPLL is unclear because of the limited results of ex-
isting investigational studies. More and more extensive inves-
tigations are urgently needed for elucidating the relationship 
between dietary habits and the risk of development of OPLL. 

CONCLUSION AND FUTURE DIRECTION FOR OPLL 
RESEARCH

In spite of a multitude of investigations, the exact causal 
genes for the development of OPLL are still not elucidated, al-
though diverse genes showed the evidence of being involved 
into the occurrence and progression of OPLL. In addition to 
the current surgical management of OPLL, cutting-edge strat-
egy for prevention and management using pharmacological 
means is essentially needed and has not been suggested 
until now. Therefore, novel drugs and/or drug targets should 
be developed based on the in-depth additional examination 
of genetic factors involved into the etiology of OPLL. Specifi-
cally, novel agents that can possibly regulate the intracellular 
signaling of TGF-β/BMPs and/or the genes encoding collagen, 
which is known to play an important role during the develop-

ment of bone and to be associated with OPLL, including CO-
L6A1, COL11A2, and COL17A1, should be developed. Also, 
the environmental factors, especially the exact relationship 
between diets and the occurrence of OPLL, should be speci-
fied through future investigational studies (Fig. 1).
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