References
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015 https://doi.org/10.1038/nature14539
- K. He, X. Zhang, S. Ren, and J. Sun, " Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification, " 2015 IEEE International Conference on Computer Vision (ICCV). IEEE Computer Society, 2015, pp. 1026-1034
- I. Goodfellow, Y. Bengio, and A. Courville, "Deep Learning" MIT Press, 2016, http://www.deeplearningbook.org. ( accessed May 2019)
- O. Ronneberger, P. Fischer, and T. Brox, " U-Net: Convolutional networks for biomedical image segmentation, " in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Springer, Cham, pp. 234-241, 2015
- Hughes, D.P.; Salathe, M. "An open access repository of images on plant health to enable the development of mobile disease diagnostics" arXiv:1511.08060v2, 2016
- Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J. "High performance neural networks for visual object classification" arXiv preprint arXiv:1102.0183, (2011)
- Krizhevsky, A., Sutskever, I., Hinton, G.E. "Imagenet classification with deep convolutional neural networks" NIPS. pp. 1097-1105, 2012
- A. Rozantsev, V. Lepetit, and P. Fua, "On rendering synthetic images for training an object detector, " Computer Vision and Image Understanding (CVIU), vol. 137, pp. 24-37, 2015. https://doi.org/10.1016/j.cviu.2014.12.006
- G. Riegler, M. Urschler, M. Ruther, H. Bischof, and D. Stern, " Anatomical landmark detection in medical applications driven by synthetic data, " 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 85-89. Dec 2015
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, " Generative Adversarial Nets, " Advances in Neural Information Processing Systems 27 (NIPS). Curran Associates, Inc., pp. 2672-2680, 2014
- T.Karras, T. Aila, S. Laine, and J. Lehtinen, " Progressive growing of GANs for improved quality, stability, and variation, " Proceedings of the Sixth International Conference on Learning Representations (ICLR), 2018.
- A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, "Learning from simulated and unsupervised images through adversarial training, " 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2242-2251, 2017
- T. Neff, C. Payer, D. Stern, and M. Urschler, "Generative Adversarial Network based synthesis for supervised medical image segmentation, " Proceedings of the OAGM&ARW Joint Workshop, pp. 140-145, 2017
- Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, "Improved Techniques for Training GANs" CoRR abs/1606.03498, 2016
- Japkowicz, N. "The class imbalance problem: Significance and strategies" Proceedings of the 2000 International Conference on Artificial Intelligence (ICAI' 2000). Citeseer, 2000
- P. Costa et al., " Towards adversarial retinal image synthesis," arXiv preprint arXiv:1701.08974, 2017.
- D. Nie et al., Medical "Image Synthesis with ContextAware Generative Adversarial Networks", Springer International Publishing, Cham, pp.417-425, 2017.
- Z. Yi, H. Zhang, P. Tan, and M. Gong, "DualGAN: Unsupervised Dual Learning for Image-to-Image Translation," ArXiv:1704.02510, Apr. 2017.
- M.-Y. Liu, T. Breuel, and J. Kautz, " Unsupervised Image-to-Image Translation Networks, " ArXiv:1703.00848, 2017.
- J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, " Unpaired Image-to-Image Translation using CycleConsistent Adversarial Networks," ArXiv:1703.10593, 2017.
- Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, " StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation, " ArXiv:1711.09020, 2017.
- A. Radford, L. Metz, and S. Chintala, " Unsupervised representation learning with deep convolutional generative adversarial networks, " arXiv preprint arXiv:1511.06434, 2015.
- V. Dumoulin and F. Visin, "A guide to convolution arithmetic for deep learning, " arXiv preprint arXiv:1603.07285, 2016
- Tung, H.-Y. F., Harley, A. W., Seto, W., and Fragkiadaki, K. "Adversarial inverse graphics networks: Learning 2d-to3d lifting and image-to-image translation from unpaired supervision" The IEEE International Conference on Computer Vision (ICCV), vol. 2, pp.4364-4372, 2017.
- Wolf, L., Taigman, Y., and Polyak, A. "Unsupervised creation of parameterized avatars" arXiv preprint arXiv:1704.05693, 2017.
- Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A. A., and Darrell, T. Cycada:"Cycleconsistent adversarial domain adaptation" arXiv preprint arXiv:1711.03213, 2017.
- Li, C., Liu, H., Chen, C., Pu, Y., Chen, L., Henao, R., and Carin, L. Alice "Towards understanding adversarial learning for joint distribution matching" Advances in Neural Information Processing Systems, pp.5501-5509, 2017.
- Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J. "High performance neural networks for visual object classification" arXiv preprint arXiv:1102.0183, 2011
- Simard, P.Y., Steinkraus, D., Platt, J.C., et al. "Best practices for convolutional neural networks applied to visual document analysis" ICDAR. vol.3, pp.958-962, 2003
- I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. "Improved training of wasserstein gans" arXiv preprint arXiv:1704.00028, 2017.
- O. Ronneberger, P. Fischer, and T. Brox. "U-net: Convolutional networks for biomedical image segmentation" International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241, 2015.
- M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. "Gans trained by a two time-scale update rule converge to a local nash equilibrium" Advances in Neural Information Processing Systems, pp.6629-6640, 2017.
- Talebi, H., Milanfar, P.: "NIMA: neural image assessment," IEEE Trans. Image Process, Vol.27, pp.3998-4011, 2018 https://doi.org/10.1109/TIP.2018.2831899
- ChangSeong Kim, DongSuk Lee, Dong Sun Park, "Automatic Pedestrian Removal Algorithm Using Multiple Frames", Smart media journal, vol.4, no.2, pp.26-33, June. 2015
- Seo Jeong Kim, Jae Su Lee, Hyong Suk Kim, "Deep learning-based Automatic Weed Detection on Onion Field", Smart media journal, vol.7, no.3, pp.16-21, Sept. 2018 https://doi.org/10.30693/SMJ.2018.7.3.16
- Nazki, H., Lee, J., Yoon, S. and Park, D.S., "Synthetic Data Augmentation for Plant Disease Image Generation using GAN," Proceedings of the Korea Contents Association Conference, pp.459-460.