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ON NEW INEQUALITIES OF SIMPSON’S TYPE FOR
GENERALIZED CONVEX FUNCTIONS

MEHMET ZEKI SARIKAYA, HUSEYIN BUDAK, AND SAMET ERDEN

ABSTRACT. In this paper, using local fractional integrals on fractal
sets R® (0 < a < 1) of real line numbers, we establish new some
inequalities of Simpson’s type based on generalized convexity.

1. Introduction

The following inequality is one of the best-known results in the liter-
ature as Simpson’s inequality.

THEOREM 1. Let f : [a,b] — R be a four times continuously differen-
tiable mapping on (a,b) and Hf(4)||oo = sup |f(4)(x)| < 00. Then, the
z€(a,b)

following inequality holds:

B (3] 2

< 550 |7 0= "

For recent refinements, counterparts, generalizations and new Simp-
son’s type inequalities, see ([1], [3], [4], [6], [7], [8]).

In [3], Dragomir et. al. proved the following some recent develop-
ments on Simpson’s inequality for which the remainder is expressed in
terms of lower derivatives than the fourth.
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THEOREM 2. Suppose f : [a,b] — R is a differentiable mapping whose
derivative is continuous on (a,b) and f" € La,b]. Then the following
inequality

(1.1)

s e ()]

holds, where || f'||, = f |f/ ()| d.

The bound of (1.1) for L-Lipschitzian mapping was given in [3] by
5
Also, the following inequality was obtained in [3].

THEOREM 3. Suppose f : [a,b] — R is an absolutely continuous
mapping on [a, b] whose derivative belongs to Ly[a,b]. Then the following
inequality holds,

(1.2)
R S e B o

1,1 _
Whereg—l—a—l.

Alomari et. al proved some inequalities of Simpson type for s-convex
functions by the following Lemma:

LEMMA 1. Let f: I C R — R be an absolutely continuous mapping
on interior 1° of an interval I and a,b € I with a < b, then the following
equality holds:

1

where

2. Preliminaries

Recall the set R of real line numbers and use the Gao-Yang-Kang’s
idea to describe the definition of the local fractional derivative and local
fractional integral, see [9,10] and so on.

a)e|f,

6[f(q)+4f<a;_b> } /f )dz = (b—a / m(t) f' (bt+(1—t)a)dt
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Recently, the theory of Yang’s fractional sets [10] was introduced as
follows.
For 0 < a < 1, we have the following a-type set of element sets:

Z* : The a-type set of integer is defined as the set {0%, +1%, +2% ..., £n® ..

Q% : The a-type set of the rational numbers is defined as the set
{m®* = <§) :p,q € Z, q#0}.

J* : The a-type set of the irrational numbers is defined as the set

{m* # <§) :p,q € Z, q#0}.
R® : The a-type set of the real line numbers is defined as the set
RY=Q*UJe.
a®, b® and ¢* belongs the set R* of real line numbers, then
) a® 4+ b* and a®b* belongs the set R*;
) a® +b* = b + a® —(a+b) = (b+a)";
) 0% + (b + ) = (a + b)" + o
) a®b® = b%a® = (ab)" = (ba)a;
) a® (b%¢*) = (ab) ¢
) a® (b* + ¢*) = a®b* + a®c
(7) a® 4+ 0% = 0% + a® = a® and a®1* = 1%a* = a®.
The definition of the local fractional derivative and local fractional
integral can be given as follows.

It
(1
(2
(3
(4
(5
(6
7

DEFINITION 1. [10] A non-differentiable function f : R — R* z —
f(z) is called to be local fractional continuous at z, if for any ¢ > 0,
there exists d > 0, such that

|f (@) = f ()] <&

holds for |z — zy| < d, where €, € R. If f(x) is local continuous on the
interval (a,b), we denote f(z) € Cy(a,b).

DEFINITION 2. [10] The local fractional derivative of f(z) of order «
at x = xg is defined by

f(a) (xg) = do:jgf) ) — xh_>nxlo A" ({ix_) ;(j;@o)))
where A® (£(x) — f(z0)) =D(a + 1) (f() — f(x0))

. ——
If there exists f*+D(z) =D D% f(z) for any # € I C R, then we
denoted f € Dq1)a(I), where k =0,1,2, ...

3
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DEFINITION 3. [10] Let f(z) € Cyla,b]. Then the local fractional
integral is defined by,

N—
oI5 f () a+1 /f @) = F sy A, Z

with At; = t;11—t; and At = max {Aty, Aty, ..., Aty_1}, where [¢;,t,41],
j=0,..,N—1landa=1ty <t <..<ty_1 <ty =Dbis partition of
interval [a, b] .

Here, it follows that I f(z) = 0 if a = b and I f(x) = —p I3 f(2)
if @ < b. If for any x € [a,b], there exists I f(x), then we denoted by
f(x) € I} a,b].

DEFINITION 4 (Generalized convex function). [10] Let f: I C R —
R*. For any x1,29 € I and A € [0, 1], if the following inequality

fOz1+ (1= A)za) < A% f(z1) + (1 = N)* f(22)
holds, then f is called a generalized convex function on I.

Here are two basic examples of generalized convex functions:
(1) flz) =2, 220,p>1;

(2) f(x) = Ey(z%), x € R where E,(z%) = Z 1+k is the Mittag-

Lrffer function.

THEOREM 4. [5] Let f € D,(I), then the following conditions are
equivalent

a) f is a generalized convex function on I

b) f\@ is an increasing function on I

c) for any xy,x9 € I,

Flan) — flan) > L2

= m(xz —zl)a.

COROLLARY 1. [5] Let f € Dsy(a,b). Then f is a generalized convex
function ( or a generalized concave function) if and only if

() 2 0 (or f27(x) < 0)
for all x € (a,b).
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LEMMA 2. [10]
(1) (Local fractional integration is anti-differentiation) Suppose that
f(z) = g9 (z) € C,a,b], then we have

oly f(2) = g(b) — g(a).

(2) (Local fractional integration by parts) Suppose that f(x),g(z) €
D, [a,b] and £ (z), ¢ (z) € C, [a,b], then we have

oI5 f(@)g' W (2) = f(2)g(@)y —a I f (@)g(2).

LEMMA 3. [10] We have
., dozke I'(1+ ka)

_ (k—1)a.
Ve s ona®
1 b I'(1+ ka)
.. a(dp)® — b(k+1)a _ (kD) k
i) F(a—l—l)afx (dx) F(1+(k+1)a)( at™?), k€

R.
LEMMA 4 (Generalized Holder’s inequality). [10] Let f, g € C, [a, ],
p,q > 1 with %4—%: 1, then

b

! / F(@)g(x)| (da)®

Ia+1)

a

b % b
1 » o 1 q o
< (r<a+1> [1s@F @ ) (F(QH) [ 1@ az) )

In [5], Mo et al. proved the following generalized Hermite-Hadamard
inequality for generalized convex function:

1
q

THEOREM 5. Let f(x) € L la,b] be a generalized convex function
on [a,b] with a <b. Then

(2.1) f<a+b><F(1+a) Ig“f(t)gf(aHf(b).

2 ~ (b—a)* * 20

The interested reader is refer to [2], [5], [9]- [13] for local freactional
theory.

The main aim of this paper is to establish new Simpson’s type in-
equalities for the class of functions whose derivatives in absolute value
at certain powers are generalized convex functions.
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3. Main Results

The next theorems gives a new result of the Simpson inequality for
generelized convex functions:

THEOREM 6. Let I C R be an interval, f : [° C R — R (I° is the
interior of I) such that f € D,(I°) and f® € C,[a,b] for a,b € I° with
a < b. Then, for all x € [a,b], we have the identity

B g @ () o] - T

- i / pOF b+ (1= t)a) ()"
where
(-3 ey
p(t) =

Proof. Using the local fractional integration by parts, we have

1

/ p() F) (bt + (1 — t)a) (dt)”

0

1
I'(l+a)

VI

- ﬁ/ (t— é)aﬂa)(btﬂl —t)a) (dt)*

+ﬁ/(t—g)af(o‘)(bt+(l—t)a) (dt)°

1
2
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_ (t__> F(bt + (1 — t)a)

=

6 (b—a)" 0

0

. <t 5)“f(bt+(1—t)a) !

6 (b—a)”

1
2

1
1

- T(1+a) /P(l Fal S =t

- () - () Wl () o
_ _Zaf(aTb)a_ HO‘ £(2) (dt)®
(5) - /o

If we devide the resulting equality with (b — a)®, then we complete the
proof. O]

THEOREM 7. The assumptions of Theorem 6 are satisfied. If | f(a)|
is a generalized convex on [a,b], then we have the inequality

6% [f( )4 df (Hb) +f(b)} = F(b(l_z)o,i) P f(t )‘

|15 @+ 7]

< b—a)* [T(1+a)  TI'(1+2)
= T lr(1+2a) T (1+3a)

Proof. Taking madulus in Theorem 6, we find that

6% [f(@ b af (%”) +10)] - s )

p)] [ f@ (bt + (1 = t)a)| (dt)
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~ (b—a) {ﬁo/té‘af(a)(bwr(lt)a)(dt)a

1

B 1 57w Caa)l (dne
+F(1+a)/‘t 6‘ | F @bt + (1 - 1) )|(dt)]-

1

Since ‘ f (O‘)‘ is generalized convexity on [a, b] , we have
(3.2) |F D0t + (1= t)a)| <t |FO0)] + (1 =) [f (a)]
From (3.2), it follows that

B @+ a7 (U50) +50)] - ) o)
¢ ooy { el [ FO e [ (1) e

+/ (g—t>at“ (dt)a+/1(t—§)ata (dt)a]

1
2

e [f e -y
+1/2(gt)a(lt)o‘(dt)o‘+5/1(tg)a(lt)o‘(dt)o‘]}.

Using Lemma 3, we obtain
(3.4)

e [ () o = () R () s
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rra ) (78) @ = (35) s (m) Toess

N

i | () o - (GRe) HEE () £s)
(3.7)

i [ (Y e = () B (L)

5
6

Now, using he change of the variable u = 1 — ¢, we write

o=

(3.9) ﬁ / <é—t)a(1—t)a (dt)"

0

- s (=) v

ol

and similarly,
(3.9)

i (=) oo = (G5) S () Tty

1
6

=

(3.10)

r [ (1) a0t = () T () T

[][e

[
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(3. 11)
1
Cnagpa (I T(A+20) 1N\ T(1+0a)
1+a /(t_ ) (1= (@t)" = (216) F(1+3a)+<216> I'(1+2a)
Substituting the equalities (3.4)-(3.11) in (3.3), we obtain required in-

equality. O]

THEOREM 8. The assumptions of Theorem 6 are satisfied. If | flad
q > 1 is a generalized convex on |a,b], then we have the inequality

12 |l +ar (U50) 4 )] - TS )

e () @); Loz

22a

. [\f<“><a><"+|f<a CONE
2204

RIEICOIEG >|"r

where p,q > 1 with %—i—%zl.

Proof. Taking madulus in Theorem 6 and using generalized Holder’s
inequality, we have

313 [ @+ ar (S50) 4| - )

< 1L [l a-a) @

(3.14)
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~ (b—a) [ﬁo/'té O+ (1— ) a)| (d0)”

1

_ L i 5w —aa)l (dhe
+F(1—|—a)/‘t 6' | f@(tb+ (1 —1) )(dt)]

1

. 1 7 e '
(b—a) [(Mo/tG (dt) )
X (ﬁoﬂﬂa)(tbﬂlw a)q(dt)o‘)

1

IN

X ﬁ/vmxtwuﬂa)q(dwa) ]

Using Lemma 3, we have

(3.15) ﬁj‘t—é‘w(dt)“

_ ﬁj(é—t)ap(dt)ajtr(l:_a)j(t—%)ap(dt)a

_ P +pa) [HWT
Frl+(p+1a)| 6rH
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and

" (@

1
1 5
316) —— [ |t—=
( )r(1+@)/‘ 6
%
5

SRy J () R a—s i (R

1 5
2 6

I'(1+pa) [1—}—27’*1}&
Frl+@p+1)a) | ot

Since | f (O‘)|q is a generalized convex on [a,b], by generalized Hermite-
Hadamard inequality (Theorem 5), we have

(3.17) j’f(o‘)(tb—i—(l—t)a)’q(dt)o‘ - (b_la)a / ‘f(a)(u)‘q(du)o‘
0 a

@I+ 7 ()]
22a ’

IN

and

1 b
(3.18) /‘f(a)(tb+(1—t)a)q(dt)o‘ - /‘f(a)(u)‘q(du)a

(b—a)®
1 atb

2

£ (5] + |F®)]"

S 22a

Putting the equalities (3.15)-(3.16) and inequalities (3.17)-(3.18) in
(3.13), we obtain

g [ ar (550) s - e
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= R“f sy a>>; [(%)ma + @(’”“)a] 5

| [\f@ Q)| + | f@ <%>qr
)7

T(1+a 220

i (r <1F f(Z foi)) a>>l

L1 [f<a><a7+b>|q+f<a><b>qr
(C'(1+ ) 220

which completes the proof. O

i
1
N
| =
~

<

+

=

Q

+

VR
W |
~_
<

+

=

| I

THEOREM 9. The assumptions of Theorem 6 are satisfied. If |f(a) {q ,
q > 1 is a generalized convex on |a,b], then we have the inequality

6% [f(a)+4f (a;b) +f(b)] —LZ;? oy (1t >‘

.
A([(B) Mz (T T gy

+K212) 11§Z§+(%>%}W ‘)1

N ([CARIEE I EA R E Y [P
() T () raa] o) |

where p,q > 1 with %Jr%:l.

B =
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Proof. Taking madulus in Theorem 6, we have

6% {f( )+ 4f <a+b> +f(b)] —majbf< )‘

< g b - oa) @

«

— (h—a)° r(lia)o/‘t_els FE (4 (1~ 1) )| (dr)°

t_,

) (th+ (1 —t) )’(dt)“

Because of 110 + % =1, « (% + %) can be written instead of a. Using
the generalized Holder’s inequality, we find that

Gia [f( )+ 4f <“+b> + f(b)] - F(l_z)oé) afz‘f‘f(”‘

(b

(3.19)

Q=

t_,

J(tb+ (1 —t)a)| (dt)°

3=

t_,

Q=

1

e

J(th+ (1 —t)a)|” (dt)°
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Since ‘ f (a)}q is generalized convexity on [a, b], we have

1 1a q a
(3.20) m0/ t_é }f(a)(tb+(1—t)a)| (dt)

1 % 1" q a q a
< m/ 2| [ lrOm) =07 |19 @
e [ 25\ T (1+20) 7\ I'(1+a)
= 790 KTlG) F(1+3a)_(216) I‘(I—I—Qa)}

o [ =T\"“T(1+2a) 25\“ T'(1+«)

17| [(216) F(1+3a)+<ﬁ) T (1+2a)
and

1

(3.21) ﬁ/t—g Db+ (1 — ) a)|" (d8)°

IN

\H vl
~
|

| Ot

B f(a) q (1+2a) 25\ I'(1+«)
B ‘[(216) I'(1+ 3a) (216) F(1—|—2a)]

e () K- () He)

Also, we note that

(3.22) ﬁo/'t—é

and

(3:23) F(ll—l—a)/llt_g

NI

= (i)a - ((fj 20;))

e (B\"T(+a)
(dt) _(%) T'(1+2a)

e reol a0 @] @

293
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If we substitute (3.20)-(3.23) in (3.19), we obtain required result, which
completes the proof. O

1]

2]
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