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L-FUZZY BI-CLOSURE SYSTEMS AND L-FUZZY

BI-CLOSURE OPERATORS

Jung Mi Ko and Yong Chan Kim∗

Abstract. In this paper, we introduced the notions of right and left
closure systems on generalized residuated lattices. In particular, we
study the relations between right (left) closure (interior) operators
and right (left) closure (interior) systems. We give their examples.

1. Introduction

The notion of closure systems and closure operators facilitated to
study topological structures ,logic and lattices. Gerla [5-7] introduced
closure systems and closure operators in the unit interval [0,1].

Ward et al.[16] introduced a complete residuated lattice which is an
algebraic structure for many valued logic. It is an important mathe-
matical tool for algebraic structure. By using the concepts of lower and
upper approximation operators, information systems and decision rules
are investigated in complete residuated lattices [1-4, 11-14]. Recently,
Bělohlávek [1-4] investigate the properties of fuzzy relations and fuzzy
closure systems on a residuated lattice which supports part of founda-
tion of theoretic computer science. As an Bělohlávek’s extension, Fang
and Yue [8] introduced strong fuzzy closure systems and strong fuzzy
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closure operators. On the other hand, Georgescu and Popescue [9,10]
introduced non-commutative fuzzy Galois connection in a generalized
residuated lattice which is induced by two implications.

In this paper, we introduced the notions of right and left closure (resp.
interior) systems in a sense as the right and left least upper (resp. great-
est lower) bound on a generalized residuated lattice. In particular, we
investigated the relations between right (left) closure (interior) operators
and and right (left) closure (interior) systems. We give their examples.

2. Preliminaries

Definition 2.1. [9,10,17] A structure (L,∨,∧,�,→,⇒,⊥,>) is
called a generalized residuated lattice if it satisfies the following condi-
tions:

(GR1) (L,∨,∧,>,⊥) is a bounded lattice where > is the upper bound
and > denotes the universal lower bound;

(GR2) (L,�,>) is a monoid;
(GR3) it satisfies a residuation , i.e.

(a� b) ≤ c iff a ≤ (b→ c) iff b ≤ (a⇒ c).

Remark 2.2. [9,10,15,17]
(1) A generalized residuated lattice is a residuated lattice (→=⇒) iff

� is commutative.
(2) A left-continuous t-norm ([0, 1],≤,�) defined by a → b =

∨
{c |

a� c ≤ b} is a residuated lattice
(3) Let (L,≤,�) be a quantale. For each x, y ∈ L, we define

x→ y =
∨
{z ∈ L | z � x ≤ y},

x⇒ y =
∨
{z ∈ L | x� z ≤ y}.

Then it satisfies Galois correspondence, that is,
(x� y) ≤ z iff x ≤ (y → z) iff y ≤ (x⇒ z). Hence (L,∨,∧,�,→,⇒

,⊥,>) is a generalized residuated lattice.
(4) A pseudo MV-algebra is a generalized residuated lattice with the

law of double negation.
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In this paper, we assume (L,∧,∨,�,→,⇒,>,⊥) is a complete gen-
eralized residuated lattice with the law of double negation defined as
a = (a∗)0 = (a0)∗ where a0 = a→ ⊥ and a∗ = a⇒ ⊥.

Lemma 2.3 [9,10,17] For each x, y, z, xi, yi ∈ L, we have the following
properties.

(1) If y ≤ z, (x � y) ≤ (x � z), (x → y) ≤ (x → z) and (z → x) ≤
(y → x) for →∈ {→,⇒}.

(2) x→ (
∧
i∈Γ yi) =

∧
i∈Γ(x→ yi) and (

∨
i∈Γ xi)→ y =

∧
i∈Γ(xi → y)

for →∈ {→,⇒}.
(3) (x� y)→ z = x→ (y → z) and (x� y)⇒ z = y ⇒ (x⇒ z).
(4) x→ (y ⇒ z) = y ⇒ (x→ z) and x⇒ (y → z) = y → (x⇒ z).
(5) x� (x⇒ y) ≤ y and (x→ y)� x ≤ y.
(6) (x⇒ y)� (y ⇒ z) ≤ x⇒ z and (y → z)� (x→ y) ≤ x→ z.
(7) (x⇒ z) ≤ (y � x)⇒ (y � z) and (x→ z) ≤ (x� y)→ (z � y).
(8) x→ y ≤ (y → z)⇒ (x→ z) and (x⇒ y) ≤ (y ⇒ z)→ (x⇒ z).
(9) y → z ≤ (x→ y)→ (x→ z) and (y ⇒ z) ≤ (x⇒ y)⇒ (x⇒ z).
(10) x→ y = > iff x ≤ y.
(11) x→ y = y0 ⇒ x0 and x⇒ y = y∗ → x∗.
(12) (x→ y)∗ = x� y∗ and (x⇒ y)0 = y0 � x.
(13)

∧
i∈Γ x

∗
i = (

∨
i∈Γ xi)

∗ and
∨
i∈Γ x

∗
i = (

∧
i∈Γ xi)

∗.
(14)

∧
i∈Γ x

0
i = (

∨
i∈Γ xi)

0 and
∨
i∈Γ x

0
i = (

∧
i∈Γ xi)

0.
(15)

∧
i∈Γ xi → (

∧
i∈Γ yi) ≥

∧
i∈Γ(xi → yi) and

∨
i∈Γ xi → (

∨
i∈Γ yi) ≥∧

i∈Γ(xi → yi) for →∈ {→,⇒}.

Definition 2.4.Let X be a set. A function erX : X×X → L is called
a right partial order if it satisfies the following conditions :

(O1) erX(x, x) = > for all x ∈ X,
(O2) If erX(x, y) = erX(y, x) = >, then x = y,
(R) erX(x, y)� erX(y, z) ≤ erX(x, z), for all x, y, z ∈ X.
A function elX : X ×X → L is called a left partial order if it satisfies

(O1), (O2) and
(L) elX(y, z)� elX(x, y) ≤ elX(x, z), for all x, y, z ∈ X.
The triple (X, erX , e

l
X) is a bi-partial ordered set.

Example 2.5.
(1) We define a function erL, e

l
L : L× L→ L as

erL(x, y) = (x⇒ y), elL(x, y) = (x→ y).

By Lemma 2.3 (6), (L, erL, e
l
L) is a bi-partial ordered set.
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(2) We define a function erLX , e
l
LX : LX × LX → L as

erLX (A,B) =
∧
x∈X

(A(x)⇒ B(x)),

elLX (A,B) =
∧
x∈X

(A(x)→ B(x)).

By Lemma 2.3 (6), (LX , erLX , e
l
LX ) is a bi-partial ordered set.

3. L-fuzzy bi-closure systems and L-fuzzy bi-closure opera-
tors

Definition 3.1. A map Sr : LX → L is called an L-fuzzy right
closure system if

(S1) Sr(>X) = >,
(S2) Sr(

∧
i∈ΓAi) ≥

∧
i∈Γ S

r
X(Ai), for all Ai ∈ LX ,

(RS) Sr(α⇒ A) ≥ SrX(A), for all A ∈ LX and α ∈ L.
A map Sl : LX → L is called an L-fuzzy left closure system if it

satisfies (S1), (S2) and
(LS) Sl(α→ A) ≥ SlX(A), for all A ∈ LX and α ∈ L.
The triple (X,Sr, Sl) is called an L-fuzzy bi-closure system. A map

f : (X,SrX , S
l
X) → (Y, SrY , S

l
Y ) is called bi-continuous if SrX(f←(B)) ≥

SrY (B) and SlX(f←(B)) ≥ SlY (B) for each B ∈ LY .

Definition 3.2. Let (X, erLX , e
l
LX ) be a bi-partial ordered set. An

operator Cr : LX → LX is called an L-fuzzy right closure operator on X
if it satisfies the following conditions:

(CR1) erLX (A,Cr(A)) = >, for all A ∈ LX .

(CR2) erLX (A,B) ≤ erLX (Cr(A), Cr(B)) for all A,B ∈ LX .

(CR3) α� erLX (Cr(A)) ≤ Cr(α� A) for all A ∈ LX and α ∈ L..

An operator C l : LX → LX is called an L-fuzzy left closure operator
on X if it satisfies the conditions

(CL1) elLX (A,C l(A)) = > for all A ∈ LX ,

(CL2) elLX (A,B) ≤ elLX (C l(A), C l(B)) for all A,B ∈ LX .

(CR3) elLX (C l(A))� α ≤ C l(A� α) for all A ∈ LX and α ∈ L.

The triple (X,Cr, C l) is called an L-fuzzy bi-closure space. A map
f : (X,Cr

X , C
l
X) → (Y,Cr

Y , C
l
Y ) is called an L-fuzzy bi-closed map if
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Cr
X(f←(B)) ≤ f←(Cr

Y (B)) and C l
X(f←(B)) ≤ f←(C l

Y (B)) for each B ∈
LY .

Theorem 3.3. Let (LX , erLX , e
l
LX ) be a bi-partial ordered set and

(X,Sr, Sl) be an L-fuzzy bi-closure system. Define two maps Cr
Sr , C l

Sl :
LX → LX as follows:

Cr
Sr(A) =

∧
B∈LX

(erLX (A,B)� Sr(B)→ B),

C l
Sl(A) =

∧
B∈LX

(Sl(B)� elLX (A,B)⇒ B).

Then (X,Cr
Sr , C l

Sl) is an L-fuzzy bi-closure space.

Proof. (CR1) For each A ∈ LX , by Lemma 2.3(2,4),

erLX (A,Cr
Sr(A))

=
∧
x∈X(A(x)⇒ (

∧
B∈LX (erLX (A,B)� Sr(B)→ B))

=
∧
x∈X

∧
B∈LX (A(x)⇒ ((erLX (A,B)� Sr(B)→ B)))

=
∧
x∈X

∧
B∈LX ((erLX (A,B)� Sr(B)→ (A(x)⇒ B)))

=
∧
B∈LX ((erLX (A,B)� Sr(B)→

∧
x∈X(A(x)⇒ B(x)))) = >.

(CR2) We will show that erLX (A,B) ≤ erLX (Cr
Sr(A), Cr

Sr(B)).

Cr
Sr(A)� erLX (A,B)� erLX (B,D)� Sr(D)
≤
∧
B∈LX (erLX (A,B)� Sr(B)→ B)� erLX (A,D)� Sr(D)

≤ D (by Lemma 2.3(5)).

Then Cr
Sr(A)�erLX (A,B) ≤ Cr

Sr(B).Hence erLX (A,B) ≤ erLX (Cr
Sr(A), Cr

Sr(B)).

(CR3) For each A,B ∈ LX , since Sr(α⇒ B) ≥ Sr(B),

Cr
Sr(A) =

∧
B∈LX (erLX (A,B)� Sr(B)→ B)

=
∧
B∈LX (erLX (A,α⇒ B)� Sr(α⇒ B)→ (α⇒ B))

=
∧
B∈LX (erLX (α� A,B)� Sr(α⇒ B)→ (α⇒ B))

= α⇒
∧
B∈LX (erLX (α� A,B)� Sr(α⇒ B)→ B)

≤ α⇒
∧
B∈LX (erLX (α� A,B)� Sr(B)→ B)

= α⇒ Cr
Sr(α� A)

Hence α � Cr
Sr(A) ≤ Cr

Sr(α � A). Thus Cr
Sr is an L-fuzzy right closure

operator. Similarly, C l
Sl is an L-fuzzy left closure operator.
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Theorem 3.4. Let (LX , erLX , e
l
LX ) be a bi-partial ordered set and

(X,Cr, C l) be an L-fuzzy bi-closure operator. Define two maps SrCr , SlCl :
LX → L as follows:

SrCr(A) = erLX (Cr(A), A),

SlCl(A) = elLX (C l(A), A).

(1) (X,SrCr , SlCl) is an L-fuzzy bi-closure system such that Cr ≤ Cr
Sr
Cr

and C l ≤ C l
Sl
Cl

.

(2) If (X,Sr, Sl) is an L-fuzzy bi-closure system, then Sr ≤ SrCr
Sr

and

Sl ≤ Sl
Cl

Sl
.

Proof. (1) (S1) SrCr(>X) = erLX (Cr(>X),>X) = >.
(S2) For all Ai ∈ LX , by Lemma 2.3(15),

SrCr(
∧
i∈ΓAi) = erLX (Cr(

∧
i∈ΓAi),

∧
i∈ΓAi)

≥ erLX (
∧
i∈Γ C

r(Ai),
∧
i∈ΓAi)

≥
∧
i∈Γ e

r
LX (Cr(Ai), Ai)

=
∧
i∈Γ S

r
Cr(Ai)

(RS) For all A ∈ LX and α ∈ L, by Lemma 2.3(3),

SrCr(α⇒ A) = erLX (Cr(α⇒ A), α⇒ A)
= erLX (α� Cr(α⇒ A), A)
≥ erLX (Cr(α� (α⇒ A)), A)
≥ erLX (Cr(A), A) = SrCr(A).

Hence SrCr is an L-fuzzy right closure system. Moreover, for all A ∈ LX ,

Cr
Sr
Cr

(A) =
∧
B∈LX (erLX (A,B)� SrCr(B)→ B)

=
∧
B∈LX (erLX (A,B)� erLX (Cr(B), B)→ B)

≥
∧
B∈LX (erLX (Cr(A), Cr(B))� erLX (Cr(B), B)→ B)

≥
∧
B∈LX (erLX (Cr(A), B)→ B)

≥ Cr(A).

Similarly, Sl
Cl is an L-fuzzy left closure system.

(2) Since (a→ b)� a ≤ b iff a ≤ (a→ b)⇒,

SrCr
Sr

(A) = erLX (Cr
Sr(A), A)

= erLX (
∧
B∈LX (erLX (A,B)� Sr(B)→ B), A)

≥ erLX ((erLX (A,A)� Sr(A)→ A), A)
≥ Sr(A).
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Similarly, Sl ≤ Sl
Cl

Sl
.

Theorem 3.5. (1) If f : (X,Cr
X , C

l
X)→ (Y,Cr

Y , C
l
Y ) is an L-fuzzy bi-

closure map, then f : (X,SrCr
X
, Sl

Cl
X

) → (Y, SrCr
Y
, Sl

Cl
Y

) is a bi-continuous
map.

(2) If f : (X,SrX , S
l
X) → (Y, SrY , S

l
Y ) is a bi-continuous map, then

f : (X,Cr
Sr
X
, C l

Sl
X

)→ (Y,Cr
Sr
Y
, C l

Sl
Y

) is an L-fuzzy bi-closure map.

Proof. (1) Since Cr
X(f←(B)) ≤ f←(Cr

Y (B)),

SrCr
X

(f←(B)) = erLX (Cr(f←(B)), f←(B))

≥ erLX (f←(Cr
Y (B)), f←(B))

≥
∧
x∈X(Cr

Y (B)(f(x))⇒ B(f(x)))
≥
∧
y∈Y (Cr

Y (B)(y)⇒ B(y))
= SrCr

Y
(B).

Similarly, Sl
Cl

X
(f←(B)) ≥ Sl

Cl
Y

(B) for all B ∈ LY .

(2) Since SrX(f←(D)) ≥ SrY (D) for all D ∈ LY ,

f←(Cr
Sr
Y

(B)) = f←(
∧
D∈LY (erLY (B,D)� SrY (D)→ D))

=
∧
D∈LY (erLY (B,D)� SrY (D)→ f←(D))

≥
∧
D∈LY (erLX (f←(B), f←(D))� SrX(f←(D))→ f←(D))

≥
∧
E∈LX (erLX (f←(B), E)� SrX(E)→ E)

= Cr
Sr
X

(f←(B)).

Similarly, f←(C l
Sl
Y

(B)) ≥ C l
Sl
X

(f←(B)) for all B ∈ LY .

Definition 3.6. [1] Suppose that F : D → C, G : C → D are
concrete functors. The pair (F,G) is called a Galois correspondence
between C and D if for each Y ∈ C, idY : F ◦G(Y )→ Y is a C-morphism,
and for each X ∈ D, idX : X → G ◦ F (X) is a D-morphism.

If (F,G) is a Galois correspondence, then it is easy to check that F
is a left adjoint of G, or equivalently that G is a right adjoint of F.

Let BFC be denote the category of L-fuzzy bi-closure spaces and
bi-closure mappings for morphisms.

Let BCS be denote the category of L-fuzzy bi-closure systems and
continuous mappings for morphisms.
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Theorem 3.7. (1) F : BFC → BCS defined as F(X,Cr
X , C

l
X) =

(X,SrCr
X
, Sl

Cl
X

) is a functor.

(2) G : BCS→ BFC defined as G(X,SrX , S
l
X) = (X,Cr

Sr
X
, C l

Sl
X

) is a

functor.
(3) The pair (F,G) is a Galois correspondence between BFC and

BCS.

Proof. (1) and (2) follows from Theorem 3.5.
(3) By Theorem 3.4(2), if (X,SrX , S

l
X) is an L-fuzzy bi-closure system,

then F(G(X,SrX , S
l
X)) = (X,SCr

Sr
X

, Sl
Cl

Sl
X

) ≥ (X,SrX , S
l
X). Hence, the

identity map idX : (X,SCr
Sr
X

, Sl
Cl

Sl
X

) = F(G(X,SrX , S
l
X)) → (X,SrX , S

l
X)

is a bi-continuous map. Moreover, if (X,Cr
X , C

l
X) is an L-fuzzy bi-closure

system, by Theorem 3.4(1), G(F(X,Cr
X , C

l
X)) = (X,Cr

Sr
Cr
X

, C l
Sl

Cl
X

) ≥

(X,Cr
X , C

l
X). Hence the identity map idX : (X,Cr

X , C
l
X)→ G(F(X,Cr

X , C
l
X)) =

(X,Cr
Sr
Cr
X

, C l
Sl

Cl
X

) is a continuous map. Therefore (F,G) is a Galois cor-

respondence.

Example 3.8. Let M = {(x, y) ∈ R2 | y > 0} be a set and we define
an operation ⊗ : M ×M →M as follows:

(x1, y1)⊗ (x2, y2) = (x1 + y1x2, y1y2).

Then (M,⊗) is a group with e = (0, 1), (x, y)−1 = (−x
y
, 1
y
).

We have a positive cone P = {(a, b) ∈ R2 | b = 1, a ≥ 0 , or y > 1}
because P ∩ P−1 = {(0, 1)}, P ⊗ P ⊂ P , (a, b)−1 ⊗ P × (a, b) = P and
P ∪ P−1 = L. For (x1, y1), (x2, y2) ∈M , we define

(x1, y1) ≤ (x2, y2)
⇔ (x1, y1)−1 ⊗ (x2, y2) ∈ P, (x2, y2)⊗ (x1, y1)−1 ∈ P
⇔ y1 < y2 or y1 = y2, x1 ≤ x2.

Then (M,≤ ⊗) is a lattice-group. Put L = {(x, y) ∈ M | (1, 1
2
) ≤

(x, y) ≤ (0, 1)}. Then (L,�,⇒,→, (1, 1
2
), (0, 1)) is a generalized resid-

uated lattice where (1, 1
2
) is the least element and (0, 1) is the greatest
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element from the following statements:

(x1, y1)� (x2, y2) = (x1, y1)⊗ (x2, y2) ∨ (1, 1
2
)

= (x1 + y1x2, y1y2) ∨ (1, 1
2
),

(x1, y1)⇒ (x2, y2) = ((x1, y1)−1 ⊗ (x2, y2)) ∧ (0, 1)
= (−x1+x2

y1
, y2
y1

) ∧ (0, 1),

(x1, y1)→ (x2, y2) = ((x2, y2)⊗ (x1, y1)−1) ∧ (0, 1)
= (x2 − x1y2

y1
, y2
y1

) ∧ (0, 1).

It is not commutative because

(
2

3
,
3

4
)� (4,

1

2
) = (3 +

2

3
,
3

8
) 6= (4,

1

2
)� (

2

3
,
3

4
) = (4 +

1

3
,
3

8
).

Furthermore, we have (x, y) = (x, y)∗◦ = (x, y)◦∗ from:

(x, y)∗ = (x, y)⇒ (1,
1

2
) = (

−x+ 1

y
,

1

2y
),

(x, y)◦ = (x, y)→ (1,
1

2
) = (1− x

2y
,

1

2y
).

Let X = {a, b, c} and A ∈ LX as follows:

A(a) = (1, 0.6), A(b) = (2, 0.8), A(c) = (0, 0.6).

Define two maps Sr, Sl : LX → L as follows:

Sr(B) =

{
(0, 1), if B = α⇒ A,
(1, 1

2
), otherwise,

Sl(B) =

{
(0, 1), if B = α→ A,
(1, 1

2
), otherwise.

Then (X,Sr, Sr) is an L-fuzzy bi-closure system. For each D ∈ LX , by
Lemma 2.3(9) and Theorem 3.3,

CSr(D) =
∧
B∈LX (erLX (D,B)� Sr(B)→ B)

=
∧
α∈L(erLX (D,α⇒ A)→ (α⇒ A))

CSl(D) =
∧
B∈LX (Sl(B)� elLX (D,B)⇒ B)

=
∧
α∈L(erLX (D,α→ A)⇒ (α→ A))

By Theorems 3.3 and 3.4,(X,CSr , CSl) is an L-fuzzy bi-closure space.
Moreover, by Theorem 3.4, we have

SrCSr (D) = erLX (CSr(D), D)
= erLX (

∧
α∈L(erLX (D,α⇒ A)→ (α⇒ A)), D),

SlC
Sl

(D) = elLX (CSl(D), D)

= elLX (
∧
α∈L(elLX (D,α→ A)⇒ (α→ A)), D).
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Since SrCSr (α⇒ A) = SlC
Sl

(D)(α⇒ A) = (0, 1), we have

SrCSr ≥ Sr, SlC
Sl
≥ Sl.
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[11] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dor-

drecht, 1998.
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