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ABSTRACT. In this paper we study the approximation properties of
a continuous function by the sequence of (p, ¢)-Bernstein operators
for ¢ > p > 1. We obtain bounds of (p,q)-Bernstein operators.
Further we prove that if a continuous function admits an analytic
continuation into the disk {2 : |z| < p}, then B} (g;2) — g(2) (n —
oo) uniformly on any compact set in the given disk {z : |z| < p},
p > 0.

In 1912, S.N. Bernstein [4] defined the famous polynomial known
as Bernstein polynomial to prove the Weierstrasss approximation theo-
rem. Due to the fine properties of approximation, convergence and shape
preserving, Bernstein polynomials play an important role in approxima-
tion theory as well as in analysis, geometry and computer science etc.
Lupas [11] was the first who introduced the g-analogue of well known
Bernstein polynomial and investigated its approximation and later vari-
ous properties of g-Bernstein operators were handled by Phillip [22,23].
The approximation properties of g-generalization of other operators were
studied by several authors. Recently, Mursaleen et al. [15] applied (p, q)-
calculus in approximation theory and introduced the (p, ¢)-analogue of
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Bernstein operator. Later on many important papers have been ap-
peared on (p, ¢)-approximations (e.g. [1]- [3], [5], [6]- [10], [12]- [21]).

Here we call up certain definitions and notations of (p, ¢)-calculus:
The (p, ¢)-integer [n],, is defined as

Pt —=q"
[nlp == — = (neNU{O}).
The (p, ¢)-binomial expansion is defined as
<y + w)qu = (y + w) (py —I— qw) (p2ry + q2w) . (pn—ly + qn_lw)’

n
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and the (p, ¢)-binomial coefficients are defined by

K } = E

By induction, it can be easily seen that
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Let g € C'[0,1] be such that ¢g : [0,1] — R with ¢ > p > 1. Then the
(p, ¢)-Bernstein operators [16] of g are defined as

- ik
By (gy) =) g (p” ’“Hﬂ) Pui(p.@:y), (n€N)
=0 ["]p.q
where polynomial p, x(p, q; y) is given by

(1)
1

n—k—1
n k(k—1) s s
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Note that, for p = 1, B}, (g;y) yields g-Bernstein operators and upon
agreement, the g-Bernstein operators are used only for the case ¢ # 1.
The (p, q)-difference form of Bernstein operators [17] is as follows:
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where glyo, y1, - - ., yx] denotes the k-th order divided difference of g with
pairwise distinct nodes, that is
9(1) — 9(wo)
Yi—Y
glys, -yl — 9lyo, - - ya—1]
[Yr — Yo

9lyo] = 9(vo), glvo, 1] =

g[y(%yl; s 7yk] =
and A} is given by

oo | [klpg! -bn-k-n  koy)
Pq | k

q

where, \) =M\ =1, 0< XA <1, k=0,1,...,n
The k-th order divided difference [17] of an analytic function g can be
expressed as

>
i~

1 9(n) dn
@ ooy 0] = 50 ﬁ (M =yo)(m—y1) - (n—wy)’
where L is contour encircling vy, ..., yr and g is assumed to be analytic
on and within £. Hence, when the nodes 0, [[711]]2‘;, {Z]]’;Z, cee mzz are
inside £ and the pole o = p™¢~™ is outside, one has ,
G -
g 0’p [1]p,q7._'7p [k]p,q}zif nllgm(n)dn — ‘
[n]p,q [n]m 27 C {n (n _ P [n}iylp,q> . <n _p [n]Llp,q)}

For a function g(z) analytic in {z : |z| < p}, we use the standard notation
(6) M(r;g) = mazp < [9(2)] -

1. Auxiliary results

In this section, we prove two lemmas related to approximation of
analytic functions on compact disk {z : |z| < p} in the complex plane.

LEMMA 1.1. Let g(z) admit an analytic continuation as an entire
function g(z). Then

(7) By (g;2) = g(2) as n — o0
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uniformly on any compact set in C.

LEMMA 1.2. If j > m, q > p > 1, then the following holds:

nj ‘ 2j—m
lim H (1 — T g [k]p7Q> _ (p . : E) )
nreo | [lp.q "4

Proof. 1t is clear that
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-y
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it follows that Y37 .| Di?| < oo, and the Lebesgue Dominated Conver-
gence Theorem yields:
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The above derived Lemmas will be used to obtain main results in this
paper. 0

2. Main Results

Our first theorem illustrates bounds of Bernstein operators B (g;y)
and the second theorem states that for every uniformly continuous func-
tion g which admits an analytic continuation on a closed disk, there is a
sequence of Bernstein operators B] (g; y) which is uniformly convergent
to g.

THEOREM 2.1. Let g(y) be bounded on [0, 1] such that it has property
of analytic continuation into disk {z : |z| < p},p > 0. If

n

(8) By (g:2):=> Dbrzk (neN),

k=0
then the following relation holds
D
ok
where D = Dy, is independent of both k and n.

k:,n‘
‘Dp:q S

Proof. Case (i). Let 0 < p < 1.
Since the divided difference form of (p, q)-Bernstein operators is given
by

gow... P [Klpg :LY{ g(n) dn
’ ’ T[] 210 Jyy1=p ( - pnfl[l]PvQ> .. ( _ p—"fk[k]pyq> ’
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then, for |n| = p and k < n — j, taking modulus of denominator of (9),

we get - -
G RG]

> D1 =Dpy,>0.
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Now applying Lemma 1.2, we obtain
[0 P Apg an[k]p,q}

C 7 [nlpa

o L 2mpMlp.g) _ D,

pP,q - v v’ =
‘Dk7n| S g — 27‘(" Dlpk—H pk

[lp.q
where Dy =D}, 4p.g-

Now, we estimate the coefficients |DZ:Z} for k > n—7, that is, to consider

the case % > p. As we know that

k
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With the help of Residue theorem and equation (6), we have
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where D7 =D, 4 4.
Finally, by equations (10) and (11), we get our required result.

Case (ii). Let p > 1.
By using (4) and Lemma 1.2, we get

(12)
DP,‘I < g |:0 pnil[]‘]lﬁq L. pnk[k]pvq:| < i 27TpM(ﬂ7 g) — &
= B () P (L T 2m Dy pht pF
Now, by combining (10) and (11) we get our desired result. O

THEOREM 2.2. Let g(y) be bounded on [0, 1] and admit an analytic
continuation into disk {z : |z| < p},p > 0. Then

By .(9;2) = g(2) as n — o0
on any compact set S C {z : |z| < a}, where p < a < 1.

Proof. Let ¢ > p > 1and g :[0,1] — C be a bounded function such
that g € C'[0,a],a < 1. Then

lim By (g:p™q ™) = g(p"q™™) for all p"q™™" € [0, al.

Therefore,

p,q

B (g:2) = an;g (W) Pk (D, @ 2)-
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Since we know that

0k>m
Tim pog (" ") =40 k<m
1lk=m

and ¢ is continuous at p™q~™, the statement follows. Now let S C
{z : |z] < p} be any compact set. Choose 0 < # < p < a such that
S C {z:|z| < p}. Theorem 2.1 implies that for |z| < p, we have

n

|Byolg:2)| <) |D6" /| < Le.
k=0 (1 — ;)

Therefore, the sequence { By (g, 2) } of operators is uniformly bounded in
the disk {z : |z| < p}. Also, it converges on the sequence {p"¢~™} and
has limit point 0 to the function g(z) analytic in this disc. By Vitali’s
Convergence Theorem, By (g;2) — g(z) as n — oo uniformly on any
compact set. This completes the proof. O
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