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THE CHROMATIC POLYNOMIAL FOR CYCLE

GRAPHS

Jonghyeon Lee and Heesung Shin∗†

Abstract. Let P (G,λ) denote the number of proper vertex color-
ings of G with λ colors. The chromatic polynomial P (Cn, λ) for the
cycle graph Cn is well-known as

P (Cn, λ) = (λ− 1)n + (−1)n(λ− 1)

for all positive integers n ≥ 1. Also its inductive proof is widely well-
known by the deletion-contraction recurrence. In this paper, we give
this inductive proof again and three other proofs of this formula of
the chromatic polynomial for the cycle graph Cn.

1. Introduction

The number of proper colorings of a graph with finite colors was
introduced only for planar graphs by George David Birkhoff [1] in 1912,
in an attempt to prove the four color theorem, where the formula for this
number was later called by the chromatic polynomial. In 1932, Hassler
Whitney [3] generalized Birkhoff’s formula from the planar graphs to
general graphs. In 1968, Ronald Cedric Read [2] introduced the concept
of chromatically equivalent graphs and asked which polynomials are the
chromatic polynomials of some graph, that remains open.
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Figure 1. G , G− e and G/e

Chromatic polynomial. For a graph G, a coloring means almost al-
ways a (proper) vertex coloring, which is a labeling of vertices of G
with colors such that no two adjacent vertices have the same colors. Let
P (G, λ) denote the number of (proper) vertex colorings of G with λ col-
ors and χ(G) the least number λ satisfying P (G, λ) > 0, where P (G, λ)
and χ(G) are called a chromatic polynomial and chromatic number of
G, respectively.

In fact, it is clear that the number of λ-colorings is a polynomial in λ
from a deletion-contraction recurrence.

Proposition 1 (Deletion-contraction recurrence). For a given a graph
G and an edge e in G, we have

P (G, λ) = P (G− e, λ)− P (G/e, λ), (1)

where G − e is a graph obtained by deletion the edge e and G/e is a
graph obtained by contraction the edge e.

Example. The chromatic polynomials of graphs in Figure 1 are

P (G, λ) = λ(λ− 1)2(λ− 2),

P (G− e, λ) = λ2(λ− 1)(λ− 2), and

P (G/e, λ) = λ(λ− 1)(λ− 2).

It is confirmed that (1) is true for the graph G and the edge e in Figure 1.

Cycle graph. A cycle graph Cn is a graph that consists of a single cycle
of length n, which could be drown by a n-polygonal graph in a plane.
The chromatic polynomial for cycle graph Cn is well-known as follows.
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Figure 2. Cn (1 ≤ n ≤ 5)

Theorem 2. For a positive integer n ≥ 1, the chromatic polynomial
for cycle graph Cn is

P (Cn, λ) = (λ− 1)n + (−1)n(λ− 1) (2)

Example. For an integer n ≤ 3, it is easily checked that the chro-
matic polynomials of Cn are from (2) as follows.

P (C1, λ) = (λ− 1) + (−1)(λ− 1) = 0,

P (C2, λ) = (λ− 1)2 + (−1)2(λ− 1) = λ(λ− 1),

P (C3, λ) = (λ− 1)3 + (−1)3(λ− 1) = λ(λ− 1)(λ− 2).

As shown in Figure 2, the cycle graph C1 is a graph with one vertex
and one loop and C1 cannot be colored, that means P (C1, λ) = 0. The
cycle graph C2 is a graph with two vertices, where two edges between
two vertices, and C2 can have colorings by assigning two vertices with
different colors, that means P (C2, λ) = λ(λ − 1). The cycle graph C3

is drawn by a triangle and C3 can have colorings by assigning all three
vertices with different colors, that means P (C3, λ) = λ(λ− 1)(λ− 2).

2. Four proofs of Theorem 2

In this section, we show the formula (2) in four different ways.

2.1. Inductive proof. This inductive proof is widely well-known. A
path graph Pn is a connected graph in which n−1 edges connect n vertices
of vertex degree at most 2, which could be drawn on a single straight
line. The chromatic polynomial for path graph Pn is easily obtained by
coloring all vertices v1, . . . , vn where vi and vi+1 have different colors for
i = 1, . . . , n− 1.
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Figure 3. Cn+1 , Pn+1 and Cn

Lemma 3. For a positive integer n ≥ 1, the chromatic polynomial for
path graph Pn is

P (Pn, λ) = λ(λ− 1)n−1. (3)

We use an induction on the number n of vertices by the deletion-
contraction recurrence and the above lemma for path graph: It is already
shown that (2) is true for n ≤ 3 by the example in Section 1. Assume
that (2) is true for a positive integer n. Using (1) and (3), we have

P (Cn+1, λ) = P (Cn+1 − e, λ)− P (Cn+1/e, λ) by (1)

= P (Pn+1, λ)− P (Cn, λ)

= λ(λ− 1)n − ((λ− 1)n + (−1)n(λ− 1)) by (3)

= (λ− 1)n+1 + (−1)n+1(λ− 1).

Thus, (2) is true for all positive integers n ≥ 1.

2.2. Proof by inclusion-exclusion principle. The inclusion-exclusion
principle is a technique of counting the size of the union of finite sets.

Proposition 4 (Inclusion-exclusion principle). Let A1, A2, . . . , An
be subsets of a finite set U . Then number of elements excluding their
union is as follows∣∣∣∣∣

n⋂
i=1

Ai

∣∣∣∣∣ =
∑
I⊂[n]

(−1)|I|

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
= |U | −

n∑
i=1

|Ai|+
∑
i<j

|Ai ∩ Aj| − · · ·+ (−1)n |A1 ∩ · · · ∩ An|

where A is the complement of A in U .
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Figure 4. A cycle graph C5 and a graph K4 with names
of colors

Considering every condition to assign different colors to two adjacent
vertices, for each edge e, we define a finite sets of arbitrary (including
improper) colorings to assign same color to two adjacent vertices by the
edge e.

Let Ai be a set of colorings such that two vertices vi and vi+1 are
of same color, where vn+1 is regarded as v1. Applying the inclusion-
exclusion principle, we can write the following

P (Cn, λ) = |U | −
n∑
i=1

|Ai|+
∑
i<j

|Ai ∩ Aj|+ · · ·+ (−1)n |A1 ∩ · · · ∩ An|

= λn −
(
n

1

)
λn−1 +

(
n

2

)
λn−2 + · · ·+ (−1)nλ

= (λ− 1)n − (−1)n + (−1)nλ

= (λ− 1)n + (−1)n(λ− 1).

Thus, (2) is true for all positive integers n ≥ 1.

2.3. Algebric proof. Let us consider a case of n = 5 and λ = 4, that
is, to assign the vertices of C5 in four colors: red, blue, yellow, and green.
Also let us consider a complete graph K4 with vertex names red, blue,
yellow, and green, see Figure 4.

When red-blue-red-yellow-green is assigned in order from the vertex
v1 to the vertex v5 in C5, it is corresponding to a closed walk of length
5 in K4 which begins and ends at red, that is, it is red-blue-red-yellow-
green-red in K4. By generalizing it, we have a correspondence between
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Figure 5. A graph G and its adjacency matrix A

λ-colorings of Cn and closed walks of length n in Kλ. By this correspon-
dence, it is enough to count the number of closed walks of length n in
Kλ, instead of the number of λ-colorings of Cn.

For a graph G with vertex set {v1, . . . , vn}, the adjacency matrix of
G is an n × n square matrix A such that its element Aij is one when
there is an edge between two vertices vi and vj, and zero when there is
no edge between vi and vj.

The following related to an adjacency matrix is well-known.

Proposition 5. Let A be the adjacency matrix of the graph G on n
vertices v1, . . . , vn. Then the (i, j)th entry of the matrix An is the number
of the walk of length n beginning at vi and ending at vj.

By Proposition 5, we can calculate the number of closed walk of length
n in the complete graph Kλ: Let A be an adjacency matrix of Kλ. Then
A is a λ× λ matrix as follows

A = (aij) =


0 1 · · · 1 1
1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1
1 1 · · · 1 0

 ,

where aij = 0 if i = j, and otherwise aij = 1. So the number of closed
walks of length n in Kλ is enumerated by tr(An), which equals the sum of
all eigenvalues of An. Also let all eigenvalues of the matrix A be denoted



The chromatic polynomial for cycle graphs 531

by u1, . . . , uλ, then all eigenvalues of the matrix An are un1 , . . . , u
n
λ.

A =


0 1 · · · 1 1
1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1
1 1 · · · 1 0

 ∼

λ− 1 0 · · · 0 0

0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
0 0 · · · 0 −1

 ,

Since the matrix A have λ eigenvalues u1 = λ− 1 and u2 = · · · = uλ =
−1, we have

tr(An) =
λ∑
i=1

uni = (λ− 1)n + (−1)n + · · ·+ (−1)n︸ ︷︷ ︸
λ− 1 times

.

Thus, (2) is true for all positive integers n ≥ 1.

2.4. Bijective proof. Let Xn denote the set of λ-colorings of Cn and
[λ − 1]n be the set of n-tuples of positive integers less than λ, where
[λ− 1] means {1, . . . , λ− 1}. We consider a mapping ϕ from λ-colorings
of Cn in Xn to n-tuples in [λ− 1]n.

A mapping ϕ from Xn to [λ − 1]n. The mapping ϕ : Xn → [λ − 1]n

is defined as follows: Let ω be a λ-coloring of Cn in Xn, we write ω =
(ω1, . . . , ωn) where ωi is the color of vi in Cn and it is obvious that
ωi 6= ωi+1 for 1 ≤ i ≤ λ, where ωn+1 is regarded as ω1. An entry ωi is
called a cyclic descent of C if ωi > ωi+1 for 1 ≤ i ≤ λ. Then we define
ϕ(ω) = σ = (σ1, . . . , σn) with

σi =

{
ωi − 1, if ωi is a cyclic descent

ωi, otherwise.

Given a λ-coloring ω, if ωi = λ then ωi+1 < λ, so ωi = λ should be a
cyclic descent. Thus we have σi < λ for all 1 ≤ i ≤ n and ϕ(ω) belongs
to [λ− 1]n.

For example, in a case of n = 9 and λ = 4, ω = (1, 2, 1, 3, 2, 3, 1, 4, 2) ∈
X9 is given as an example of 4-colorings of C9. Here ω2 = 2, ω4 = 3,
ω6 = 3, ω8 = 4, and ω9 = 2 are cyclic descents of ω. So we have

ϕ(ω) = σ = (1, 1, 1, 2, 2, 2, 1, 3, 1) ∈ [3]9.
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A mapping ψ as the inverse of ϕ. Let Zn be the set of n-tuples σ =
(σ1, σ2, . . . , σn) in [λ− 1]n with

σ1 = σ2 = · · · = σn

and it is obvious that the size of Zn is λ− 1.
We would like to describe a mapping ψ : ([λ− 1]n \ Zn) → Xn in

order to satisfy ϕ ◦ ψ is the identity on [λ− 1]n \ Zn as follows: Given a
σ ∈ [λ− 1]n \ Zn, we define σ = (σ1, . . . , σn) with

σi =

{
σi + 1, if σi is a cyclic descent

σi, otherwise.

Since σ may have consecutive same entries, we define ψ(σ) = ω =
(ω1, . . . , ωn) from σ with ωi = σi + 1 for any entry σi of σ with a fi-
nite positive even integer ` satisfying

σi = σi+1 = · · · = σi+`−1 6= σi+`,

where σn+k is regarded as σk for 1 ≤ k ≤ n, and ωi = σi, otherwise.
Thus ω has no consecutive same entries and 1 ≤ ωi ≤ λ for all 1 ≤ i ≤ n,
so ψ(σ) = ω belongs to Xn. Moreover, it is obvious that σi ≤ ωi ≤ σi+1
for all 1 ≤ i ≤ n and if ωi = σi + 1 for some 1 ≤ i ≤ n then ωi is a
cyclic descent in ω. Hence ϕ(ω) = σ and σ ∈ [λ− 1]n \ Zn if and only if
ψ(σ) = ω.

In a previous example, σ = (1, 1, 1, 2, 2, 2, 1, 3, 1) is denoted as an
example of 9-tuples in [3]9. Here σ6 = 2, σ8 = 3 are cyclic descents of σ
and we obtain σ = (1, 1, 1, 2, 2, 3, 1, 4, 1). And then there exist only three
entries σ2, σ4, and σ9 in σ satisfying the following

k = 2 : σ2 = σ3 6= σ4 (` = 2),

k = 4 : σ4 = σ5 6= σ6 (` = 2), and

k = 9 : σ9 = σ1 = σ2 = σ3 6= σ4 (` = 4),

so we get ω2 = σ2 + 1 = 2, ω4 = σ4 + 1 = 3, ω9 = σ9 + 1 = 2, and

ψ(σ) = ω = (1, 2, 1, 3, 2, 3, 1, 4, 2) ∈ X9.

Let Yn be the set of λ-colorings ω in Xn with ϕ(ω) ∈ Zn. Since two
mapping ϕ and ψ are bijections between Xn \ Yn and [λ− 1]n \ Zn, the
size of the set Xn \ Yn is same with the size of the [λ − 1]n \ Zn, which
is equal to (λ− 1)n − (λ− 1).
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When n is even, for any 1 ≤ i ≤ λ− 1, there exist only two n-tuples
in Xn

ω = (i+ 1, i, i+ 1, i, . . . , i+ 1, i) and ω = (i, i+ 1, i, i+ 1, . . . , i, i+ 1)

satisfying ϕ(ω) = (i, i, . . . , i) ∈ Zn. If n is even, the size of Yn is equal to
2(λ− 1) and we obtain

P (Cn, λ) = |Xn| = |Xn \ Yn|+ |Yn|
= [(λ− 1)n − (λ− 1)] + 2(λ− 1). (4)

When n is odd, there is no n-tuples satisfying ϕ(ω) ∈ Zn and the set
Yn is empty. If n is odd, we obtain

P (Cn, λ) = |Xn| = |Xn \ Yn|+ |Yn|
= [(λ− 1)n − (λ− 1)] + 0. (5)

Therefore, (2) yields from (4) and (5) for all positive integers n ≥ 1.
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