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CROSSED SEMIMODULES AND CAT1-MONOIDS

Sedat Temel

Abstract. The main idea of this paper is to introduce the notion of
cat1-monoids and to prove that the category of crossed semimodules
C = (A,B, ∂) where A is a group is equivalent to the category of
cat1-monoids. This is a generalization of the well known equivalence
between category of cat1-groups and that of crossed modules over
groups.

1. Introduction

Crossed modules as defined by Whitehead [30, 31] have been widely
used in homotopy theory [5], the theory of group representation (see [7]
for a survey), in algebraic K-theory [13] and homological algebra [12,15].
Crossed modules can be viewed as 2-dimensional groups [6]. In [9] Brown
and Spencer proved that the category of internal groupoids within the
groups, which are also called in [9] under the name of G-groupoids and
alternative names, quite generally used are group-groupoids [8] or 2-
groups (see for example [2]) is equivalent to the category of crossed
modules of groups. In [14] Loday defined an algebraic object called
cat1-group as a group G with two endomorphisms s, t of G such that
st = t, ts = s and [Ker s,Ker t] = 0, where [Ker s,Ker t] represents
the commutator subgroup of G; and proved that the categories of cat1-
groups and crossed modules are equivalent.
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In [25] Porter proved a similar result to one in [9] holds for certain
algebraic categories, introduced by Orzech [23], which definition was
adapted by him and called category of groups with operations. The
equivalences of these categories given in [9] and [25] are very important
and useful which enable to generalize some results on group-groupoids,
equivalently cat1-groups, to the more general internal groupoids for a
certain algebraic category (see for example [1, 18, 19] and [21]). There
are also other generalizations of the Brown-Spencer Theorem [9]. First
one is the generalization to the category of monoids, that is the natural
equivalence of the category of crossed semimodules satisfying certain
conditions and that of Schreier internal categories within the category
of monoids which is given by Patchkoria [24]. The other one is the
generalization to the category of monoid with operations given in [22] by
Martins-Ferreira et. al. In [24], Patchkoria also defined Schreier internal
groupoids in the category of monoids which are naturally equivalent
to the category of crossed semimodules C = (A,B, ∂) where A is a
group. This is the special case of the equivalence given in [26] by Porter.
Topological aspect of the results of Patchkoria is given in [28]. See [29]
for 2-categorical approach to Schreier internal categories within monoids
using Schreier 2-categories with one object. Equivalences given in [3, 9,
24,26,28] are very important and enable one to interpret special objects
such as normal subobject, quotient object, etc. and special morphisms
such as covering, lifting, etc. which are known in one of the categories in
equivalences. See for example [1, 17,19,20,27] for such interpretations.

The natural equivalence between crossed modules and cat1-groups is
useful for generalisation of crossed modules to higher dimensions (see
[14]). In this note we introduce the notion of cat1-monoids and prove
the natural equivalence between the category of cat1-monoids and the
category of crossed semimodules C = (A,B, ∂) where A is a group.
This is a new way of thinking crossed semimodules as simple algebraic
structures.

2. Preliminaries

Let C be a finitely complete category. An internal category D =
(D0, D1, d0, d1, ε, µ) in C consists of a set of objects D0 and a set of
morphisms D1 together with morphisms d0, d1 : D1 → D0, ε : D0 →
D1 in C called the source, the target and the identity object maps,
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respectively,

D1

s //
t
// D0

εss

such that d0ε = d1ε = 1D0 and a morphism µ : D1 ×D0 D1 → D1 of C
called the composition map (usually expressed as µ(f, g) = g ◦ f) where
D1×D0 D1 is the pullback of d0, d1 such that εd0(f) ◦ f = f = f ◦ εd0(f)
[16]. An internal groupoid in C is an internal category in which all mor-
phisms are invertible up to groupoid composition.

An internal category (hence a groupoid) in the category Gp of groups
is called group-groupoid. A group-groupoid can also be obtained as a
group object in Cat.

A crossed module over groups is a pair of groups A,B with an action
• : B × A → A of B on A denoted by b • a for a ∈ A and b ∈ B and a
morphism ∂ : A→ B of groups satisfies the following conditions

[CM 1] ∂(b • a) = b∂(a)b−1

[CM 2] ∂(a) • a1 = aa1a
−1,

for a, a1 ∈ A and b ∈ B [30,31]. For the basic examples of crossed mod-
ules see [10].

The following theorem is proved in [9] by Brown and Spencer.

Theorem 2.1. The category GpGd of group-groupoids is equivalent
to the category Cm of crossed modules over groups.

Let Mon denote the category of monoids. Recall from [24] that a
Schreier internal category M = (M0,M1, d0, d1, ε, µ) in Mon is an inter-
nal category which satisfies the Schreier condition: for any f ∈M1 there
exists a unique g ∈ Ker d0 such that

f = gεd0(f).

A Schreier internal groupoid in Mon is a Schreier internal category in
which all morphisms are invertible up to composition.

We recall the definition of crossed semimodules from [24]. A crossed
semimodule C = (A,B, ∂) consists of a pair of monoids A,B and a
homomorphism ∂ : A→ B of monoids with an action • : B × A→ A of
B on A satisfying

[CSM 1] ∂(b • a)b = b∂(a)
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[CSM 2] (∂(a) • a1)a = aa1,

for a, a1 ∈ A and b ∈ B.
Let C = (A,B, ∂) and C ′ = (A′, B′, ∂′) be crossed semimodules. A

crossed semimodule morphism is a mapping λ = (λ1, λ2) : C → C ′ where
λ1 : A → A′ and λ2 : B → B′ are monoid homomorphisms such that
λ1(b • a) = λ2(b) •′ λ1(a) and λ2∂ = ∂′λ1.

B × A • //

λ2×λ1
��

A

λ1

��

∂ // B

λ2

��
B′ × A′

•′
// A′

∂′
// B′

Hence crossed semimodules and their morphisms form a category which
we denoted by Csm.

The following theorem and corollary are proved in [24]:

Theorem 2.2. The category SIC of Schreier internal categories in
Mon is equivalent to the category Csm of crossed semimodules.

Note that this theorem is obtained as a special case of the equivalence
given in [29].

Let Csm* denote the category of crossed semimodules C = (A,B, ∂)
such that A is a group. Then we obtain the following corollary as a
restriction of above equivalence.

Corollary 2.3. The category SIG of Schreier internal groupoids in
Mon is equivalent to the category Csm*.

Note that this corollary is obtained as a special case of the equivalence
given in [26]. Restricting this corollary to the case of groups, Theorem
2.1 is obtained as given in [9] and [24].

Let G be a group. We recall that from [10] a cat1-group (or 1-cat-
group [14]) is a triple G = (G, s, t) with two group homomorphisms
s, t : G→ G called structural maps satisfying following conditions

[C1G 1] st = t and ts = s
[C1G 2] [Ker s,Ker t] = 1 where [Ker s,Ker t] is the commutator sub-

group of Ker s and Ker t.



Crossed semimodules and cat1-monoids 539

A cat1-group morphism is a group homomorphism f : (G, s, t) →
(G′, s′, t′) where G = (G, s, t) and G ′ = (G′, s′, t′) are cat1-groups such
that s′f = fs and t′f = ft.

G
s //
t
//

f
��

G

f
��

G′
s′ //

t′
// G′

Hence cat1-groups form a category which we denoted by Cat1-Gp. For
the categorical equivalence between crossed modules over groups and
cat1-groups, see [10].

3. Cat1-monoids

Definition 3.1. A cat1-monoid is a tripleM = (M, s, t) where M is
a monoid and s, t : M →M are monoid homomorphisms of M satisfying

[C1M 1] st = t and ts = s,
[C1M 2] xy = yx for x ∈ Ker s, y ∈ Ker t,
[C1M 3] Ker s is a group and
[C1M 4] there exists a unique m̃ ∈ Ker s for all m ∈ M such that

m = m̃s(m).

Example 3.2. Consider the monoid (Z4, ·) and the group (Z5, ·).
Then we construct a cat1-monoid (Z4 × Z5, s, t) with direct product

where s(x4, y5) = (x4, 1
5
) and t(x4, y5) = (y · x4, 15

). Clearly Ker s is a

group. Since (x4, y5) = (1
4
, y5) · (x4, 15

), all pairs satisfy the condition
[C1M4].

Example 3.3. Every cat1-group is a cat1-monoid. Note that m̃ =
ms(m−1).

Proposition 3.4. Given any cat1-monoid (M, s, t), we have

1. Im s = Im t,
2. s and t are identities on Im s,
3. s2 = s and t2 = t.

Proof. The proof is straightforward. So it is ommitted.
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Definition 3.5. A morphism f : (M, s, t)→ (M ′, s′, t′) of cat1-monoids
is a morphism of monoids such that s′f = fs and t′f = ft.

M
s //
t
//

f
��

M

f
��

M ′ s′ //

t′
// M ′

Hence we can construct the category of cat1-monoids which we denoted
by Cat1-Mon.

Proposition 3.6. Let C = (A,B, ∂) be an object of Csm*. Then
M = (M, s, t) is a cat1-monoid where M = B n A is the semi-direct
product of monoids, s(b, a) = (b, 1) and t(b, a) = (∂(a)b, 1).

Proof. We define a functor ψ : Csm*→Cat1-Mon such that ψ(A,B, ∂) =
(M, s, t). The product of M is defined by

(b, a)(b′, a′) = (bb′, a(b • a′))

for a, a′ ∈ A, b, b′ ∈ B. Clearly s is a monoid homomorphism. We prove
that t is a homomorphism of monoids.

t
(

(b, a)(b′, a′)
)

= t
(
bb′, a(b • a′)

)
=

(
∂(a)∂(b • a′)bb′, 1

)
= (∂(a)b∂(a′)b′, 1)

= (∂(a)b, 1)(∂(a′)b′, 1)

= t(b, a)t(b′, a′)
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It is easy to show that s and t satisfy [C1M1]. With respect to [C1M2],
for elements (1, a) ∈ Ker s and (b′, a′) ∈ Ker t, we have

(b′, a′)(1, a) = (b′, a′(b′ • a))

=
(
b′,
(
∂(a′) • (b′ • a)

)
a′
)

=
(
b′,
(
∂(a′)b′ • a)

)
a′
)

=
(
b′,
(
1 • a)

)
a′
)

= (b′, aa′)

= (b′, a(1 • a′))
= (1, a)(b′, a′).

Clearly Ker s is a group. Since (b, a) = (1, a)(b, 1) = (1, a)s(b, a), that is

(̃b, a) = (1, a) and so each element of M satisfies [C1M4].

Proposition 3.7. LetM = (M, s, t) be a cat1-monoid. Then γ(M, s, t) =
(A,B, ∂) is an object of Csm* where A = Ker s, B = Im s, ∂ = t|Ker s

and an action of B on A is defined by (n • x)n = nx, for x ∈ Ker s and
n ∈ Im s.

Proof. We define a functor

γ : Cat1-Mon→ Csm*

as a weak inverse of ψ such that γ(M, s, t) = (A,B, ∂). First we show
that • is an action of Im s on Ker s. Let n, n′ ∈ Im s and x, x′ ∈ Ker s.
Since

(nn′ • x)nn′ = nn′x = n(n′ • x)n′ =
(
n • (n′ • x)

)
nn′,

under the condition [C1M4] we write

(nn′) • x = n • (n′ • x).

Since
(n • (xx′))n = nxx′ = (n • x)nx′ = (n • x)(n • x′)n,

under the condition [C1M4]

n • (xx′) = (n • x)(n • x′).
Clearly

1 • x = (1 • x)1 = 1x = x.
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Now we will verify [CSM1] and [CSM2]. Since n = t(n) = s(n), by
Proposition 3.4. we get

t(n • x)n = t(n • x)t(n) = t((n • x)n) = t(nx) = t(n)t(x) = nt(x).

On the other hand

(t(x) • x′)x = (t(x) • x′)t(x)t(x−1)x = t(x)x′t(x−1)x.

Since t(x−1)x ∈ Ker t and x′ ∈ Ker s, by [C1M2] we have

(t(x) • x′)x = t(x)x′t(x−1)x = t(x)t(x−1)xx′ = xx′.

As a corollary of Propositions 3.6 and 3.7 we can give the following
theorem.

Theorem 3.8. The categories Cat1-Mon and Csm* are equivalent.

Proof. Let f : (M, s, t)→ (M ′, s′, t′) be a morphism of cat1-monoids,
n ∈ Im s, x ∈ Ker s. Since f(n) ∈ N ′, the condition [C1M4] allows us to
write

f(n • x)f(n) = f((n • x)n) = f(nx) = f(n)f(x) =
(
f(n) • f(x)

)
f(n)

and so under the same condition we have

f(n • x) = f(n) • f(x).

This means that γ(f) = (f, f) is a morphism of crossed semimodules.

On the other hand, given a morphism λ = (λ1, λ2) : C → C ′ where
C = (A,B, ∂) and C ′ = (A′, B′, ∂′) are crossed semimodules such that
A,A′ are groups, ψ(λ1, λ2) = (λ2, λ1) is a morphism of cat1-monoids as
shown in the following diagram.

B n A
s //
t
//

(λ2,λ1)
��

B n A

(λ2,λ1)
��

B′ n A′
s′ //

t′
// B′ n A′

We will verify that this diagram is commutative.
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(λ2, λ1)s(b, a) = (λ2, λ1)(b, 1)

= (λ2(b), 1)

= s′(λ2(b), λ1(a))

= s′(λ2, λ1)(b, a)

(λ2, λ1)t(b, a) = (λ2, λ1)(∂(a)b, 1)

= (λ2∂(a)λ2(b), 1)

= (∂λ1(a)λ2(b), 1)

= t′(λ2(b), λ1(a))

= t′(λ2, λ1)(b, a)

A natural equivalence S : 1Cat1-Mon → ψγ is given via a mapping

S(M, s, t) = (Im sn Ker s, s′, t′)

such that SM(m) = (s(m), m̃) and s′(n, x) = (n, 1), t′(n, x) = (t(x)n, 1)
is an isomorphism. We will verify that SM is a homomorphism.

SM(mm1) = SM

(
m̃s(m)m̃1s(m1)

)
= SM

(
m̃
(
s(m) • m̃1

)
s(m)s(m1)

)
= SM

(
m̃
(
s(m) • m̃1

)
s(mm1)

)
=

(
s(mm1), m̃

(
s(m) • m̃1)

)
=

(
s(m), m̃

)(
s(m1), m̃1

)
= SM(m)SM(m1)

On the other hand, a natural equivalence T : 1Csm* → γψ is defined
by

T (C) = (Ker s, s(B n A), t)

for C = (A,B, ∂) such that TC(b) = (b, 1), TC(a) = (1, a).
Other details are straightforward and so is omitted.

Since every group is a monoid then the following equivalence given
in [10,14] is a consequence of Theorem 3.8.



544 Sedat Temel

Theorem 3.9. [10] The category of crossed modules over groups is
equivalent to the category of cat1-groups.
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[17] Mucuk, O., Şahan, T. and Alemdar, N., Normality and quotients in crossed
modules and group-groupoids, Applied Categorical Structures 23 (3) (2015), 415–
428.

[18] Mucuk, O., Kılıçarslan, B., Şahan T. and Alemdar N., Group-groupoids and
monodromy groupoids, Topology Appl. 158 (15) (2011), 2034–2042.
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