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MONODROMY GROUPOID OF A LOCAL

TOPOLOGICAL GROUP-GROUPOID

H. Fulya Akiz

Abstract. In this paper, we define a local topological group-groupoid
and prove that if G is a local topological group-groupoid, then the
monodromy groupoid Mon(G) of G is a local group-groupoid.

Introduction

The general idea of the monodromy principle was stated in Chevalley
[10] for a topological structure G and also for a topological group and
developed by Douady and Lazard in [11] for Lie groups, generalized to
topological groupoid case in [3] and [15].

The notion of monodromy groupoid was described by J. Pradines [21]
in the early 1960s. Let G be a topological groupoid such that each
star Gx has a universal cover and as a set, Mon(G) be the union of the
stars (π1Gx)1x . Then there is a groupoid structure on Mon(G) whose
object set X is the same as that of G and groupoid composition is
defined by the concatenation composition of the paths in the stars Gx.
In [3], in the smooth groupoid case including topological groupoids, the
star topological groupoid and topological groupoid structures of Mon(G)
are studied under some suitable local conditions. We call Mon(G), the
monodromy groupoid of G.
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In Mackenzie [12], it was given a non-trivial direct construction of the
topology on Mon(G) and proved also that Mon(G) satisfies the mon-
odromy principle on the globalisation of continuous local morphisms on
G.

A group-groupoid is an internal groupoid in the category of groups
[2,15]. In [14] it is proved that if G is a topological group-groupoid, then
the monodromy groupoid Mon(G) becomes a group-groupoid, which is
defined in [2,4] as the group object in the category of groupoids. In [19],
this result was generalized to internal groupoids in topological groups
with operations. So it is proved in [19] that if G is a topological group
with operations, then Mon(G) becomes an internal groupoid in the cat-
egory of groups with operations. Also in [8], the monodromy groupoid
of a Lie groupoid is constructed.

The properties an examples of local subgroupoids are given in [9]. on
the other hand the notion of local topological group-groupoid which is
the group object in the category of local topological groupoids is given
in [20]. Also it is proved that the category LTGpCov/L of covering mor-

phisms p : L̃→ L of local topological groups in which L̃ has also a uni-
versal cover and the category LTGpGdCov/π1(L) of covering morphisms

q : G̃ → π1(L) of local topological group-groupoids based on π1(L) are
equivalent [20].

In this paper we prove that if G is a local topological group-groupoid,
then the monodromy groupoid Mon(G) becomes a local group-groupoid.

1. Prelimineries

A groupoid is a (small) category in which each morphism is an iso-
morphism [1, p.205]. So a groupoid G has a set G of morphisms , which
we call just elements of G, a set Ob(G) of objects together with maps
s, t : G → Ob(G) and ε : Ob(G) → G such that sε = tε = 1Ob(G). The
maps s, t are called initial and final point maps respectively and the
map ε is called object inclusion. If g, h ∈ G and t(g) = s(h), then the
composite gh exists such that s(gh) = s(g) and t(gh) = t(h). So there
exists a partial composition defined by Gt×sG→ G, (g, h) 7→ gh, where
Gt ×s G is the pullback of t and s. Further, this partial composition is
associative, for x ∈ Ob(G) the element ε(x) denoted by 1x acts as the
identity, and each element g has an inverse g−1 such that s(g−1) = t(g),



Monodromy groupoid of a local topological group-groupoid 549

t(g−1) = s(g), gg−1 = (εs)(g), g−1g = (εt)(g). The map G → G,
a 7→ g−1 is called the inversion.

In a groupoid G for x, y ∈ Ob(G) we write G(x, y) for the set of all
morphisms with initial point x and final point y. We say G is transitive
if for all x, y ∈ Ob(G), the set G(x, y) is not empty. For x ∈ Ob(G) we
denote the star {g ∈ G | s(g) = x} of x by Gx.

A star topological groupoid is a groupoid in which the stars Gx’s
have topologies such that for each g ∈ G(x, y) the left (and hence right)
translation

Lg : Gy −→ Gx, h 7→ gh

is a homeomorphism and G is the topological sum of the Gx’s.

Definition 1.1. [5,6] A topological groupoid is a groupoid such that
the set G of morphisms and the set Ob(G) of objects are topological
spaces and source, target, inclusion, inverse and product maps are con-
tinuous. �

Definition 1.2. [6] Let G and G̃ be two topological groupoids.
Then a groupoid morphism of topological groupoids is a morphism of

groupoids p : G̃→ G such that the pair of maps p : G̃→ G andOp : Ob(G̃)→
Ob(G) are continuous. �

Recall that a covering map p : X̃ −→ X of connected spaces is called

universal if it covers every covering of X in the sense that if q : Ỹ −→ X

is another covering of X then there exists a map r : X̃ −→ Ỹ such that

p = qr (hence r becomes a covering). A covering map p : X̃ −→ X is

called simply connected if X̃ is simply connected. So a simply connected
covering is a universal covering.

Let X be a topological space admitting a simply connected cover. A
subset U of X is called liftable if U is open, path-connected and the
inclusion U −→ X maps each fundamental group of U trivially. If U
is liftable, and q : Y −→ X is a covering map, then for any y ∈ Y and
x ∈ U such that qy = x, there is a unique map i : U −→ Y such that
ix = y and qi is the inclusion U −→ X. A space X is called semi-locally
simply connected if each point has a liftable neighborhood and locally
simply connected if it has a base of simply connected sets. So a locally
simply connected space is also semi-locally simply connected.

Let X be a topological space such that each path component of X
admits a simply connected covering space. It is standard that if the
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fundamental groupoid π1X is denoted with the topology as in [7], and
x ∈ X, then the target map t : (π1X)x −→ X is the universal covering
map of X based at x (see also Brown [1, 10.5.8]).

The following theorem is proved in [7, Theorem 1]. We give a sketch
proof since we need some details of the proof in Theorem 3.11. An
alternative but equivalent construction of the topology is in [1, 10.5.8].

Theorem 1.3. If X is a locally path connected and semi-locally sim-
ply connected space, then the fundamental groupoid π1X may be given
a topology making it a topological groupoid.

Proof. Let U be the open cover of X consisting of all liftable subsets.
For each U in U and x ∈ U define a map λx : U → πX by choosing for
each x′ ∈ U , a path in U from x to x′ and letting λx(x′) be the homotopy
class of this path. By the condition on U the map λx is well defined. Let

Ũx = λx(U). Then the sets Ũ−1x αṼy for all α ∈ πX(x, y) form a base for
a topology such that πX is a topological groupoid with this topology.�

2. Monodromy Groupoids

In this section we give a review of the constructions of the monodromy
groupoid from [3].

Let G be a star topological groupoid. The groupoid Mon(G) is defined
from the universal covers of stars Gx’s at the base points identities as
follows: As a set, Mon(G) is the union of the stars (π1Gx)1x . The
object set X of Mon(G) is the same as that of G. The initial point
map s : Mon(G)→ X maps all of (π1Gx)1x to x, while the target point
map t : Mon(G)→ X is defined on each (π1Gx)1x as the composition of
the two target maps

(π1Gx)1x
t−→ Gx

t−→ X.

As expounded in Mackenzie [12] it is seen a multiplication on Mon(G)
defined by

[a] • [b] = [a ? (a(1)b)],

where ? inside the bracket denotes the usual composition of paths. So
the path a ? (a(1)b) is defined by

(a ? (a(1)b))(t) =

 a(2t), 0 6 t 6 1
2

a(1)b(2t− 1), 1
2
6 t 6 1.
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Here assume that a is a path in Gx from 1x to a(1), where t(a(1)) = y,
say, and b is a path in Gx from 1y to b(1), then for each t ∈ [0, 1] the
composition a(1)b(t) is defined in Gy, running a path a(1)b from a(1) to
a(1)b(1). It is straightforward to prove that in this way a groupoid is
defined on Mon(G) and that the composition of the final maps of paths
induces a morphism of groupoids p : Mon(G)→ G.

If each star Gx admits a simply connected cover at 1x, then we may
topologise each star (Mon(G))x so that it is the universal cover of Gx

based at 1x, and then Mon(G) becomes a star topological groupoid. We
call Mon(G) the monodromy groupoid or star universal cover of G.

Let Gpd be the category of groupoids and TGd the category of topo-
logical groupoids. Let STGd be the full subgroupoid of TGd on those
topological groupoids whose stars have universal covers. Then we have
a functor

Mon: STGd→ Gpd

assigning each topological groupoid G such that the stars have universal
covers, to the monodromy groupoid Mon(G).

Theorem 2.1. [14, Theorem 2.1] For the topological groupoids G and
H such that the stars have universal covers, the monodromy groupoids
Mon(G×H) and Mon(G)×Mon(H) are isomorphic.

Example 2.2. Let G be a topological group which can be thought as
a topological groupoid with only one object. If G has a simply connected
cover, then the monodromy groupoid Mon(G) of G is just the universal
cover of G. �

Example 2.3. [3, Theorem 6.2] If X is a topological space, then
G = X × X becomes a topological groupoid on X. Here a pair (x, y)
is a morphism from x to y with inverse morphism (y, x). The groupoid
composition is defined by (x, y)(u, z) = (x, z) whenever y = u. If X has
a simply connected cover, then the monodromy groupoid Mon(G) of G
is isomorphic to the fundamental groupoid π1(X). �

3. Local group-groupoid structure of monodromy groupoids

In this section we introduce the notion of local topological group-
groupoid and prove that if G is a local topological group-groupoid where
each star Gx has a universal cover, then Mon(G) is a local group-
groupoid.
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Now we emphasis the definition given in [16, Definition 2].

Definition 3.1. Let L be a set. A local group is a quintuple L =
(L, µ,U , i, V ), where

(1) a distinguish element e ∈ L, the identity element,
(2) a multiplication µ : U → L, (x, y) 7→ x ◦ y defined on a subset U of

L× L such that ({e} × L) ∪ (L× {e}) ⊆ U ,
(3) an inversion map i : V → L, x 7→ x defined on a subset e ∈ V ⊆ L

such that V × i(V ) ⊆ U and i(V )× V ⊆ U ,
all satisfying the following properties:

(i) Identity: e ◦ x = x = x ◦ e for all x ∈ L
(ii) Inverse: i(x) ◦ x = e = x ◦ i(x), for all x ∈ V

(iii) Associativity: If (x, y), (y, z), (x ◦ y, z) and (x, y ◦ z) all belong
to U , then

x ◦ (y ◦ z) = (x ◦ y) ◦ z.

�

From now on we denote such a local group by L.

Note that if U = L × L and V = L, then a local group becomes a
group. It means that the notion of local group generalizes that of group.
Now we give the following definition (see [16, Definition 5]):

Definition 3.2. Let (L, µ,U , i, V ) and (L̃, µ̃, Ũ , ĩ, Ṽ ) be local groups.

A map f : L→ L̃ is called a local group morphism if

(i) (f × f)(U) ⊆ Ũ , f(V ) ⊆ Ṽ , f(e) = ẽ
(ii) f(x ◦ y) = f(x) ◦ f(y) for (x, y) ∈ U
(iii) f(i(x)) = ĩ(f(x)) for x ∈ V .

�

We study on the topological version of Definition 3.1.

Definition 3.3. [16] Let L be a local group, if L has a topology
structure such that U is open in L×L, V is open in L, the maps µ and
i are continuous, then (L, µ,U , i, V ) is called a local topological group.�

It is obvious that if U = L × L and V = L, then a local topological
group L becomes a topological group.
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Example 3.4. [16, p.26] Let G be a topological group, L be an open
neighbourhood of the identity element e. Then we obtain a local topo-
logical group taking U = (L × L) ∩ µ−1(L) and V = L ∩ L, where
L = {x|x ∈ L}.

Here the group product µ and the inversion i on G are restricted to
define a local group product and inverse maps on L.

Further if we choose U and V such that

({e} × L) ∪ (L× {e}) ⊆ U ⊆ (L× L) ∩ µ−1(L)

{e} ⊆ V ⊆ L ∩ i−1(L)

and
V × i(V )) ∪ (i(V )× V ) ⊆ U

then we have a local topological group.
�

Definition 3.5. [17, Definition 3.3] Let (L, µ,U , i, V ) and (L̃, µ̃, Ũ , ĩ, Ṽ )

be local topological groups. A continuous map f : L→ L̃ is called a local
topological group morphism if

(i) (f × f)(U) ⊆ Ũ , f(V ) ⊆ Ṽ , f(e) = ẽ
(ii) f(x ◦ y) = f(x) ◦ f(y) for (x, y) ∈ U
(iii) f(i(x)) = ĩ(f(x)) for x ∈ V .

�

Before giving the definition of local group-group, we state local mor-
phism of groupoids (see [13, Definition 6.1.6] for the notion of local
morphism of Lie groupoids).

Definition 3.6. Let G and H be groupoids. A local morphism from
G to H consists of a map f : W → H defined on a subset of G including
all the identities 1x for x ∈ Ob(G) such that

(i) f(ab) = f(a)f(b) for a, b ∈ W with t(a) = s(a)
(ii) f(a−1) = f(a)−1.

The notion of local group-groupoid is given in [17, Definition 4.1] as
follows.

Definition 3.7. A local group-groupoid G is a groupoid in which
Ob(G) and G both have local group structures such that the following
maps are the local morphisms of groupoids (i.e., they are both groupoid
morphsims and local group morphisms):
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(i) µ : U → G, (a, b) 7→ a ◦ b
(ii) i : V → G, a 7→ a
(iii) e : ?→ G, where is ? is singleton.

�

In a local group-groupoid we write ab for the composition in groupoid
while a ◦ b for the multiplication in local group; and write a−1 for the
inverse of a in groupoid while a for the one in local groupoid. We obtain
that in a local group-groupoid G,

(ac) ◦ (bd) = (a ◦ b)(c ◦ d)

for a, b, c, d ∈ G such that the necessary composition and multiplications
are defined.

The category of local group-groupoids is denoted by LGpGpd.

Definition 3.8. [17, Definition 5.1] Let G and H be two local group-
groupoids. A morphism of local group-groupoids f : H → G is a mor-
phism of underlying groupoids preserving local group structure, i.e.,
f(a ◦ b) = f(a) ◦ f(b) for a, b ∈ U ⊆ H ×H. �

Definition 3.9. [17, Definition 5.1] A morphism f : H → G of local
group-groupoids is called a covering morphism (resp. universal covering
morphism)if it is a covering (resp. universal covering) on underlying
groupoids. �

As topological version of Definition 3.7, a local morphism of topolog-
ical groupoids can be stated as follows:

Definition 3.10. Let G and H be topological groupoids. A local
morphism from G to H consists of a continuous local morphism f : W →
H of groupoids defined on an open subset ofG including all the identities.

Now we study on local topological group-groupoids as the following
definition:

Definition 3.11. Let G be a topological groupoid. If the set G of
morphisms and the set Ob(G) of objects have local topological group
structures such that the maps

(i) µ : U → G, (a, b) 7→ a ◦ b
(ii) i : V → G, a 7→ a
(iii) e : ?→ G, where is ? is singleton
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are local morphisms of topological groupoids, then G is called a local
topological group-groupoid.

�

Let us denote the category of local topological group-groupoids as
LTGpGpd.

Example 3.12. A local topological group is just a local topological
group-groupoid with one object and arrows the elements of the local
topological group.

Example 3.13. Given any collection of local topological groups L1, L2, ...
their disjoint unionG = L1

⊔
L2

⊔
... is a local topological group-groupoid;

here a pair of morphisms of G can only be composed if they come from
the same Ln in which case their composition is the product they have
there.

Example 3.14. If L is a local topological group, then G = L× L is
a local topological group-groupoid.
We know that L × L is a topological groupoid. Since Ob(G) = L is
a local topological group, we prove that L × L has a local topological
group structure. On the other hand L×L is a local group-groupoid [17,
Example 4.1]. Here a pair (x, y) is a morphism from x to y and the
groupoid composite is defined by (x, y)(z, u) = (x, u) whenever y = z.
The local group multiplication is defined by (x, y)◦ (z, u) = (x◦ z, y ◦u).
The maps

µ′ = (µ× µ) : U × U → L× L, ((x, y), (z, u)) 7→ (x ◦ z, y ◦ u)

and

i′ = (i× i) : V × V 7→ L× L, (x, y) 7→ (x, y) = (x, y)

exist and since µ and i are continuous respectively, then µ′ and i′ are
continuous such that U ′ = U × U is open in G × G and V ′ = V × V is
open in G. Then G = L×L becomes a local topological group-groupoid.
�

Example 3.15. If L is a local topological group such that the under-
lying space is locally path connected and semi-locally simply connected,
then the fundamental groupoid π1L is a local topological group-groupoid.
Let L be a local topological group such that U ⊆ L× L and e ∈ V ⊆ L
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are open. We know from [7, Proposition 4.2] that π1L is a topological
groupoid. Since the maps on local topological group structure

µ : U → L, (x, y) 7→ x ◦ y
and

i : V 7→ L, x 7→ x

are continuous, then the induced maps

π1(µ) : π1U → π1L, [(a, b)] 7→ [a ◦ b]
and

π1(i) : π1V 7→ π1L, [a] 7→ [a] = [a]

are well defined. Note that since (a, b) is defined in U , then a ◦ b is
defined. So π1L is a local group-groupoid [17, Proposition 4.2]. Also the
induced maps π1(µ) and π1(i) are continuous such that π1U and π1V are
open. Therefore π1L becomes a local topological group-groupoid. �

Theorem 3.16. Let X and Y be local topological groups such that
the underlying spaces are locally path connected and semi-locally simply
connected. Then π1(X × Y ) and π1X × π1Y are isomorphic as local
topological groupoids.

Proof. We know from [1] that the topological groupoids π1(X × Y )
and π1X × π1Y are isomorphic as groupoids. By Theorem 1.3 and the
reference [1, 6.4.4] it is possible to see that π1(X × Y ) and π1X × π1Y
are homeomorphic. �

In [14, Theorem 3.10], it is proved that if G is a topological group-
groupoid such that each star Gx has a universal cover, then the mon-
odromy groupoid Mon(G) is a group-groupoid. Also Mucuk and Akız,
in [19, Theorem 3.13], proved a more general result and developed the
monodromy groupoid for an internal groupoid in the category of topo-
logical groups with operations, which is defined in [18]. We now give the
local group-groupoid structure of monodromy groupoids.

Theorem 3.17. Let G be a local topological group-groupoid such
that each star Gx has a universal cover. Then the monodromy groupoid
Mon(G) is a local group-groupoid.

Proof. Let G be a local topological group-groupoid as assumed. Con-
sidering the local group structures of Ob(G) and G, we define local group
structures of Ob(Mon(G)) and Mon(G). Since Ob(G) = Ob(Mon(G)),
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then it is sufficient to prove that Mon(G) satisfies the conditions of local
group.

(1) Let e be the identity element of Ob(G) and so 1e be the identity
element of local group G. Then [ae] is the identity element of
Mon(G), which is also identity morphism in Mon(G) from e to e,
where ae is the constant path at 1e in Ge.

(2) There is a local topological group structure on the set G of mor-
phisms with the local group multiplication

µ : U → G, (a, b) 7→ a ◦ b

defined on a subset U of G×G. Considering the functor

Mon: STGd→ Gpd,

and taking Mon(U) = Ũ , we have the following multiplication

µ̃ : Ũ → Mon(G), ([a], [b]) 7→ [a] ◦ [b] = [a ◦ b]

defined on the subset Ũ ⊆ Mon(G)×Mon(G) such that ({[ae]} ×
Mon(G)) ∪ (Mon(G)× {[ae]}) ⊆ Ũ is well defined.

(3) There is an inversion map

i : V → G, a 7→ a

defined on a subset 1e ∈ V ⊆ G are continuous morphisms of local

groupoids. By taking Mon(V ) = Ṽ , we have the following map

i : Ṽ → Mon(G), [a] 7→ [a]

defined on the subset [ae] ∈ Ṽ ⊆ Mon(G) such that Ṽ × i(Ṽ ) ⊆ Ũ
and i(Ṽ )× Ṽ ⊆ Ũ .

In addition to these properties, we have to shove that the fol-
lowing conditions are satisfied:
(i) Identity: µ̃([ae], [a]) = [ae] ◦ [a] = µ̃([a], [ae]), for all [a] ∈

Mon(G).
(ii) Inverse: µ̃([i(a)], [a]) = µ̃([a], [a]) = [a ◦ a] = [ae] and on the

other hand we have µ̃([a], [i(a)]) = µ̃([a], [a]) = [a ◦ a] = [ae],

for all [a] ∈ Ṽ .
(iii) Associativity: If ([a], [b]), ([b], [c]), (µ̃([a], [b]), [c]) and ([a], µ̃([b], [c]))

all belong to Ũ , then by the local group structure of G we have,
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µ̃([a], µ̃([b], [c])) = µ̃([a], [b ◦ c])
= [a] ◦ ([b] ◦ [c]).

On the other hand

µ̃(µ̃([a], [b]), [c]) = µ̃([a ◦ b], [c])
= ([a ◦ b]) ◦ [c].

Then [a] ◦ ([b] ◦ [c]) = ([a ◦ b]) ◦ [c]

Now we have to prove that the morphisms µ̃ and i are morphisms

of local groups. For the morphism µ̃ : Ũ → Mon(G), ([a], [b]) 7→ [a ◦ b],
since

µ̃(([a], [b])([c], [d])) = µ̃([ac], [bd]) = [ac ◦ bd]

and

µ̃([a], [b])µ̃([c], [d]) = [a ◦ b][c ◦ d] = [ac ◦ bd],

then we have

µ̃(([a], [b])([c], [d])) = µ̃([a], [b])µ̃([c], [d]).

So µ̃ is a local morphism.

For the morphism i : Ṽ → G, a 7→ a, since

i([a][b]) = i([ab]) = [ab] = [ab] = [a][b]

and

i([a])i([b]) = [a][b],

we have

i([a][b]) = i([a])i([b]).

So i is a local morphism.
We now prove that the interchange law

[a ◦ c] • [b ◦ d] = [a • b] ◦ [c • d]

in Mon(G) is satisfied when • denotes the groupoid composition in
Mon(G) and a • b, c • d are defined and (a, c) and (c, d) are in U . If
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these a • b and b • c are defined, then we have the following:

(a • b)(t) =

 a(2t), 0 6 t 6 1
2

a(1)b(2t− 1), 1
2
6 t 6 1

(c • d)(t) =

 c(2t), 0 6 t 6 1
2

c(1)d(2t− 1), 1
2
6 t 6 1

(a • b) ◦ (c • d)(t) =

 (a ◦ c)(2t), 0 6 t 6 1
2

(a(1)b(2t− 1)) ◦ (c(1)d(2t− 1)), 1
2
6 t 6 1

Hence

(a • b) ◦ (c • d) = (a ◦ c) ? ((a(1)b) ◦ (c(1)d))).

On the other hand

(a ◦ c) • (b ◦ d)(t) =

 (a ◦ c)(2t), 0 6 t 6 1
2

(a ◦ c)(1)(b ◦ d)(2t− 1), 1
2
6 t 6 1

and hence

(a ◦ c) • (b ◦ d) = (a ◦ c) ? (a ◦ c)(1)(b ◦ d).

By the interchange law in G, (a ◦ c)(1)(b ◦ d) = (a(1)b) ◦ (c(1)d)) and
so we have that

(a ◦ c) • (b ◦ d) = (a • b) ◦ (c • d).

which insures the interchange law in Mon(G).
For a, b ∈ Mon(G), where a • b is defined, we have the followings:

(a • b)(t) =

 a(2t), 0 6 t 6 1
2

(a(1)b(2t− 1)), 1
2
6 t 6 1

and

a(t) • b(t) =

 a(2t), 0 6 t 6 1
2

a(1) b(2t− 1), 1
2
6 t 6 1

.

Since (a(1)b(2t− 1)) = a(1) b(2t− 1) in G we have that a • b = a • b.
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All these details complete the proof that Mon(G) is a local group-
groupoid. �

We can now restate [14, Theorem 2.1] for local topological group-
groupoids as follows:

Theorem 3.18. For local topological group-groupoidsG andH whose
stars have universal covers, the monodromy groupoids Mon(G×H) and
Mon(G)×Mon(H) are isomorphic as local group-groupoids.

Proof. We know from the proof of [14, Theorem 2.1] that

f : Mon(G×H) −→ Mon(G)×Mon(H), f([a]) = ([p1a], [p2a])

is an isomorphism of groupoids. So it is sufficient to prove that f is a
local morphism.

For [a], [b] ∈ Mon(G),

f([a] ◦ [b]) = ([p1(a ◦ b)], [p2(a ◦ b)])
= ([p1a ◦ p1b)], [p2a ◦ p2b)])
= ([p1a], [p2a)]) ◦ ([p1b], [p2b])

= f([a]) ◦ f([b]).

Also for [a] ∈ Mon(G),

f(i[a]) = f [i(a)]

= ([p1(i(a))], [p2(i(a))])

= ([i(p1a)], [i(p2a)])

= i([p1a], [p2a])

= i(f [a]).

Then f becomes a local morphism. �

As a result of Theorem 3.17 we can state that we have a functor
Mon: LTGpGpd→ LGpGpd.

Acknowledgement: I would like to thank the referee for useful com-
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