DOI QR코드

DOI QR Code

Effect of mushroom (Schizophyllum spp.) derived β-glucan on low-fiber diet induced gut dysbiosis

  • Muthuramalingam, Karthika (Department of Biochemistry, School of Medicine, Jeju National University) ;
  • Singh, Vineet (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University) ;
  • Choi, Changmin (Department of Biochemistry, School of Medicine, Jeju National University) ;
  • Choi, Seung In (Department of Pharmaceutical Research Institute, Quegen Biotech Co. Ltd.) ;
  • Park, Sanggyu (Division of Life & Environmental Science, Daegu University) ;
  • Kim, Young Mee (Department of Biochemistry, School of Medicine, Jeju National University) ;
  • Unno, Tatsuya (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University) ;
  • Cho, Moonjae (Department of Biochemistry, School of Medicine, Jeju National University)
  • Received : 2019.05.22
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

Dietary pattern has paramount importance in shaping the gut microbiota and its associated host health. Herein this study, long term (12 weeks) impact of mushroom derived dietary fiber, ${\beta}-glucan$, is investigated for its effect on low fiber diet consumption. Inclusion of dietary fiber into the low fiber diet (LFD) increased the abundance of genera Lactobacillus and Anaerostipes, the microbes responsible for butyrate (major 'fuel source' of colonocytes) production. Mice fed LFD with ${\beta}-glucan$ showed significant increase in the length of small intestine compared to that of the LFD group without ${\beta}-glucan$. Further, dietary fiber consumption enhanced goblet cell density along with mucosal layer thickness. These results indicate promising effects of ${\beta}-glucan$ towards maintenance of healthy gut and gut microbiota.

Keywords

References

  1. Makki K, Deehan EC, Walter J, Backhed F (2018) The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host and Microbe 23: 705-715. doi: 10.1016/j.chom.2018.05.012
  2. National Research Council (U.S.), Institute of Medicine (U.S.). Standing Committee on the Scientific Evaluation of Dietary Reference Intakes., Institute of Medicine (U.S.). Panel on the Definition of Dietary Fiber. (2001) Dietary reference intakes: proposed definition of dietary fiber: a report of the Panel on the Definition of Dietary Fiber and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes
  3. Slavin JL (2005) Dietary fiber and body weight. Nutrition 21: 411-418. doi: 10.1016/j.nut.2004.08.018
  4. Marlett JA, McBurney MI, Slavin JL (2002) Health implications of dietary fiber. Journal of the American Dietetic Association 102: 993-1000 https://doi.org/10.1016/S0002-8223(02)90228-2
  5. King DE, Mainous AG, Lambourne CA (2012) Trends in Dietary Fiber Intake in the United States, 1999-2008. Journal of the Academy of Nutrition and Dietetics 112: 642-648. doi: 10.1016/j.jand.2012.01.019
  6. Deehan EC, Walter J (2016) The Fiber Gap and the Disappearing Gut Microbiome: Implications for Human Nutrition. Trends in Endocrinology and Metabolism 27: 239-242. doi: 10.1016/j.tem.2016.03.001
  7. El Khoury D, Cuda C, Luhovyy BL, Anderson GH (2012) Beta glucan: Health benefits in obesity and metabolic syndrome. Journal of Nutrition and Metabolism 2012:. doi: 10.1155/2012/851362
  8. Xin-Zhong H, Xia-Lu S, Xiao-Ping L, Liu L, Jian-Mei Z, Zing-Yun C (2015) Effect of dietary oat ${\beta}$-glucan on high-fat diet induced obesity in HFA mice. Bioactive Carbohydrates and Dietary Fibre 5: 79-85. doi: 10.1016/j.bcdf.2014.12.006
  9. Kim SY, Song HJ, Lee YY, Cho KH, Roh YK (2009) Biomedical Issues of Dietary fiber ${\beta}$-Glucan. Journal of Korean Medical Science 21: 781. doi: 10.3346/jkms.2006.21.5.781
  10. Choi JS, Kim H, Jung MH, Hong S, Song J (2010) Consumption of barley ${\beta}$-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet. Molecular Nutrition and Food Research 54: 1004-1013. doi: 10.1002/mnfr.200900127
  11. de Araujo TV, Andrade EF, Lobato RV, Orlando DR, Gomes NF, de Sousa RV, Zangeronimo MG, Pereira LJ (2017) Effects of beta-glucans ingestion (Saccharomyces cerevisiae) on metabolism of rats receiving high-fat diet. Journal of Animal Physiology and Animal Nutrition 101:349-358 https://doi.org/10.1111/jpn.12452
  12. Miyamoto J, Watanabe K, Taira S, Kasubuchi M, Li X, Irie J, Itho H, Kimura I (2018) Barley ${\beta}$-glucan improves metabolic condition via shortchain fatty acids produced by gut microbial fermentation in high fat diet fed mice. PLoS ONE 13: 1-13. doi: 10.1371/journal.pone.0196579
  13. Wang Y, Ames NP, Tun HM, Tosh SM, Jones PJ, Khafipour E (2016) High molecular weight barley ${\beta}$-glucan alters gut microbiota toward reduced cardiovascular disease risk. Frontiers in Microbiology 7: 1-15. doi: 10.3389/fmicb.2016.00129
  14. Ghaffarzadegan T, Zhong Y, Fak Hallenius F, Nyman M (2018) Effects of barley variety, dietary fiber and ${\beta}$-glucan content on bile acid composition in cecum of rats fed low- and high-fat diets. Journal of Nutritional Biochemistry 53: 104-110. doi: 10.1016/j.jnutbio.2017.10.008
  15. Schloss PD, Westcott SL, Ryabin,T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn JD, Weber CF (2009) Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology 75: 7537-7541. doi: 10.1128/AEM.01541-09
  16. de Vries J, Miller PE, Verbeke K (2015) Effects of cereal fiber on bowel function: A systematic review of intervention trials. World journal of gastroenterology 21: 8952-8963. doi: 10.3748/wjg.v21.i29.8952
  17. Hansson GC (2012) Role of mucus layers in gut infection and inflammation. Current Opinion in Microbiology 15: 57-62. doi: 10.1016/j.mib.2011.11.002
  18. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, Young VB, Henrissat B, Wilmes P, Stappenbeck TS, Nunez G, Martens EC, (2016) A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 167: 1339-1353.e21. doi: 10.1016/j.cell.2016.10.043
  19. Sato T, Matsumoto K, Okumura T, Yokoi W, Naito E, Yoshida Y, Nomoto K, Ito M, Sawada H (2008) Isolation of lactate-utilizing butyrate-producing bacteria from human feces and in vivo administration of Anaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model. FEMS Microbiology Ecology 66: 528-536. doi: 10.1111/j.1574-6941.2008.00528.x
  20. Bui TPN, de Vos WM, Plugge CM (2014) Anaerostipes rhamnosivorans sp. nov., a human intestinal, butyrate-forming bacterium. International Journal of Systematic and Evolutionary Microbiology 64: 787-793. doi: 10.1099/ijs.0.055061-0
  21. Hamer HM, Jonkers D, Venema K, Vanhoutcin S, Troost FJ, Brummer RJ (2008) Review article: The role of butyrate on colonic function. Alimentary Pharmacology and Therapeutics 27: 104-119. doi: 10.1111/j.1365-2036.2007.03562.x
  22. Monolayers C-C, Peng L, Li Z, Green RS, Holzman IR, Lin J (2009) Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase. J Nutr 139: 1619-1625. doi: 10.3945/jn.109.104638.1619
  23. Krych, Nielsen DS, Hansen AK, Hansen CHF (2015) Gut microbial markers are associated with diabetes onset, regulatory imbalance, and IFN-a level in NOD Mice. Gut Microbes 6: 101-109. doi: 10.1080/19490976.2015.1011876
  24. Nguyen TLA, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Disease Models & Mechanisms 8: 1-16. doi: 10.1242/dmm.017400