DOI QR코드

DOI QR Code

The antinociceptive effect of artemisinin on the inflammatory pain and role of GABAergic and opioidergic systems

  • Dehkordi, Faraz Mahdian (Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University) ;
  • Kaboutari, Jahangir (Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University) ;
  • Zendehdel, Morteza (Department of Physiology, Faculty of Veterinary Medicine, University of Tehran) ;
  • Javdani, Moosa (Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University)
  • Received : 2018.11.22
  • Accepted : 2019.03.19
  • Published : 2019.07.01

Abstract

Background: Pain is a complex mechanism which involves different systems, including the opioidergic and GABAergic systems. Due to the side effects of chemical analgesic agents, attention toward natural agents have been increased. Artemisinin is an herbal compound with widespread modern and traditional therapeutic indications, which its interaction with the GABAergic system and antinoniceptive effects on neuropathic pain have shown. Therefore, this study was designed to evaluate the antinociceptive effects of artemisinin during inflammatory pain and interaction with the GABAergic and opioidergic systems by using a writhing response test. Methods: On the whole, 198 adult male albino mice were used in 4 experiments, including 9 groups (n = 6) each with three replicates, by intraperitoneal (i.p.) administration of artemisinin (2.5, 5, and 10 mg/kg), naloxone (2 mg/kg), bicuculline (2 mg/kg), saclofen (2 mg/kg), indomethacin (5 mg/kg), and ethanol (10 mL/kg). Writhing test responses were induced by i.p. injection of 10 mL/kg of 0.6% acetic acid, and the percentage of writhing inhibition was recorded. Results: Results showed significant dose dependent anti-nociceptive effects from artemisinin which, at a 10 mg/kg dose, was statistically similar to indomethacin. Neither saclofen nor naloxone had antinociceptive effects and did not antagonize antinociceptive effects of artemisinin, whereas bicuculline significantly inhibited the antinocicptive effect of artemisinin. Conclusions: It seems that antinocicptive effects of artemisinin are mediated by $GABA_A$ receptors.

Keywords

References

  1. Labuz D, Celik MO, Zimmer A, Machelska H. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain. Sci Rep 2016; 6: 32799. https://doi.org/10.1038/srep32799
  2. Onasanwo SA, Rotu RA. Antinocicep tive and anti-inflammatory potentials of kolaviron: mechanisms of action. J Basic Clin Physiol Pharmacol 2016; 27: 363-70. https://doi.org/10.1515/jbcpp-2015-0075
  3. Staud R. Abnormal endogenous pain modulation is a shared characteristic of many chronic pain conditions. Expert Rev Neurother 2012; 12: 577-85. https://doi.org/10.1586/ern.12.41
  4. Zarei S, Bigizadeh S, Pourahmadi M, Ghobadifar MA. Chronic pain and its determinants: a population-based study in Southern Iran. Korean J Pain 2012; 25: 245-53. https://doi.org/10.3344/kjp.2012.25.4.245
  5. Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. J Pain 2013; 14: 1255-69. https://doi.org/10.1016/j.jpain.2013.06.008
  6. Xu Q, Yaksh TL. A brief comparison of the pathophysiology of inflammatory versus neuropathic pain. Curr Opin Anaesthesiol 2011; 24: 400-7. https://doi.org/10.1097/ACO.0b013e32834871df
  7. LaGraize SC, Fuchs PN. GABAA but not GABAB receptors in the rostral anterior cingulate cortex selectively modulate pain-induced escape/avoidance behavior. Exp Neurol 2007; 204: 182-94. https://doi.org/10.1016/j.expneurol.2006.10.007
  8. Hasanein P, Mirazi N, Javanmardi K. GABAA receptors in the central nucleus of amygdala (CeA) affect on pain modulation. Brain Res 2008; 1241: 36-41. https://doi.org/10.1016/j.brainres.2008.09.041
  9. Goudet C, Magnaghi V, Landry M, Nagy F, Gereau RW 4th, Pin JP. Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev 2009; 60: 43-56. https://doi.org/10.1016/j.brainresrev.2008.12.007
  10. Enna SJ, McCarson KE. The role of GABA in the mediation and perception of pain. Adv Pharmacol 2006; 54: 1-27. https://doi.org/10.1016/S1054-3589(06)54001-3
  11. Neto FL, Ferreira-Gomes J, Castro-Lopes JM. Distribution of GABA receptors in the thalamus and their involvement in nociception. Adv Pharmacol 2006; 54: 29-51. https://doi.org/10.1016/S1054-3589(06)54002-5
  12. Ying M, Liu H, Zhang T, Jiang C, Gong Y, Wu B, et al. Effect of artemisinin on neuropathic pain mediated by P2X4 receptor in dorsal root ganglia. Neurochem Int 2017; 108: 27-33. https://doi.org/10.1016/j.neuint.2017.02.004
  13. Qnais EY, Alatshan AZ, Bseiso YG. Chemical composition, antinociceptive and anti-inflammatory effects of Artemisia herba-alba essential oil. J Food Agric Environ 2016; 14: 20-7.
  14. Kaboutari J, Arab HA, Ebrahimi K, Rahbari S. Prophylactic and therapeutic effects of a novel granulated formulation of Artemisia extract on broiler coccidiosis. Trop Anim Health Prod 2014; 46: 43-8. https://doi.org/10.1007/s11250-013-0444-x
  15. Kaboutari Katadj J, Rafieian-Kopaei M, Nourani H, Karimi B. Wound healing effects of Artemisia sieberi extract on the second degree burn in mice skin. J Herbmed Parmacol 2016; 5: 67-71.
  16. Favero Fde F, Grando R, Nonato FR, Sousa IM, Queiroz NC, Longato GB, et al. Artemisia annua L.: evidence of sesquiterpene lactones' fraction antinociceptive activity. BMC Complement Altern Med 2014; 14: 266. https://doi.org/10.1186/1472-6882-14-266
  17. Lee S. Artemisinin, promising lead natural product for various drug developments. Mini Rev Med Chem 2007; 7: 411-22. https://doi.org/10.2174/138955707780363837
  18. Salah SM, Jager AK. Two flavonoids from Artemisia herbaalba Asso with in vitro $GABA_A$-benzodiazepine receptor activity. J Ethnopharmacol 2005; 99: 145-6. https://doi.org/10.1016/j.jep.2005.01.031
  19. Li J, Casteels T, Frogne T, Ingvorsen C, Honore C, Courtney M, et al. Artemisinins target $GABA_A$ receptor signaling and impair $\alpha$ cell identity. Cell 2017; 168: 86-100.e15. https://doi.org/10.1016/j.cell.2016.11.010
  20. Liu HK. Artemisinin, GABA signaling and cell reprogramming: when an old drug meets modern medicine. Sci Bull 2017;62: 386-7. https://doi.org/10.1016/j.scib.2017.02.006
  21. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983; 16: 109-10. https://doi.org/10.1016/0304-3959(83)90201-4
  22. Zendehdel M, Torabi Z, Hassanpour S. Antinociceptive mechanisms of Bunium persicum essential oil in the mouse writhing test: role of opioidergic and histaminergic systems. Vet Med 2015; 60: 63-70. https://doi.org/10.17221/7988-VETMED
  23. de Sousa DP. Medicinal essential oils: chemical, pharmacological and therapeutic aspects. New York, Nova Science Publishers. 2012.
  24. Asahi Y, Yonehara N. Involvement of GABAergic systems in manifestation of pharmacological activity of desipramine. Jpn J Pharmacol 2001; 86: 316-22. https://doi.org/10.1254/jjp.86.316
  25. Fonseca DV, Salgado PR, de Carvalho FL, Salvadori MG, Penha AR, Leite FC, et al. Nerolidol exhibits antinociceptive and anti-inflammatory activity: involvement of the GABAergic system and p roinflammatory cytokines. Fundam Clin Pharmacol 2016; 30: 14-22. https://doi.org/10.1111/fcp.12166
  26. Scoto GM, Arico G, Ronsisvalle S, Parenti C. Effects of intraplantar nocistatin and ($\pm$)-J 113397 injections on nociceptive behavior in a rat model of inflammation. Pharmacol Biochem Behav 2012; 100: 639-44. https://doi.org/10.1016/j.pbb.2011.11.007
  27. Taylor F, Dickenson A. Nociceptin/orphanin FQ. A new opioid, a new analgesic? Neuroreport 1998; 9: R65-70.
  28. Jia Y, Linden DR, Serie JR, Seybold VS. Nociceptin/orphanin FQ binding increases in superficial laminae of the rat spinal cord during persistent peripheral inflammation. Neurosci Lett 1998; 250: 21-4. https://doi.org/10.1016/S0304-3940(98)00430-3
  29. Andoh T, Itoh M, Kuraishi Y. Nociceptin gene expression in rat dorsal root ganglia induced by peripheral inflammation. Neuroreport 1997; 8: 2793-6. https://doi.org/10.1097/00001756-199708180-00028
  30. Merfort I. Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets 2011; 12: 1560-73. https://doi.org/10.2174/138945011798109437
  31. Hanrahan JR, Chebib M, Johnston GA. Flavonoid modulation of GABA(A) receptors. Br J Pharmacol 2011; 163: 234-45. https://doi.org/10.1111/j.1476-5381.2011.01228.x
  32. Chadwick M, Trewin H, G awthrop F, Wagstaff C . Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 2013; 14: 12780-805. https://doi.org/10.3390/ijms140612780
  33. Dinari S, Monajemi R, Amjad L. Analgesic and anti-inflammatory effects of methanol extracts of aerial parts Artemisia aucheri in mice (Balb/c). Scinzer J Agric Biol Sci 2016; 2: 33-8.
  34. Koga K, Shimoyama S, Yamada A, Furukawa T, Nikaido Y, Furue H, et al. Chronic inflammatory pain induced GABAergic synaptic plasticity in the adult mouse anterior cingulate cortex. Mol Pain 2018; 14: 1744806918783478. https://doi.org/10.1177/1744806918783478
  35. Woll KA, Zhou X, Bhanu NV, Garcia BA, Covarrubias M, Miller KW, et al. Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors. FASEB J 2018; 32: 4172-89. https://doi.org/10.1096/fj.201701347R
  36. Anseloni VC, Gold MS. Inflammation-induced shift in the valence of spinal GABA-A receptor-mediated modulation of nociception in the adult rat. J Pain 2008; 9: 732-8. https://doi.org/10.1016/j.jpain.2008.03.004
  37. Vranken JH. Mechanisms and treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem 2009; 9: 71-8. https://doi.org/10.2174/187152409787601932
  38. McDonald AJ, Mascagni F, Muller JF. Immunocytochemical localization of GABABR1 receptor subunits in the basolateral amygdala. Brain Res 2004; 1018: 147-58. https://doi.org/10.1016/j.brainres.2004.05.053
  39. Zhang XL, Lee KY, Priest BT, Belfer I, Gold MS. Inflammatory mediator-induced modulation of GABAA currents in human sensory neurons. Neuroscience 2015; 310: 401-9. https://doi.org/10.1016/j.neuroscience.2015.09.048
  40. Jang IJ, Davies AJ, Akimoto N, Back SK, Lee PR, Na HS, et al. Acute inflammation reveals $GABA_A$ receptor-mediated nociception in mouse dorsal root ganglion neurons via PGE2 receptor 4 signaling. Physiol Rep 2017; 5: e13178. https://doi.org/10.14814/phy2.13178
  41. Kim MJ, Park YH, Yang KY, Ju JS, Bae YC, Han SK, et al. Participation of central $GABA_A$ receptors in the trigeminal processing of mechanical allodynia in rats. Korean J Physiol Pharmacol 2017; 21: 65-74. https://doi.org/10.4196/kjpp.2017.21.1.65
  42. Malcangio M. $GABA_B$ receptors and pain. Neurop harmacology 2018; 136 Part A: 102-5. https://doi.org/10.1016/j.neuropharm.2017.05.012
  43. Zhu Y, Lu SG, Gold MS. Persistent inflammation increases GABA-induced depolarization of rat cutaneous dorsal root ganglion neurons in vitro. Neuroscience 2012; 220: 330-40. https://doi.org/10.1016/j.neuroscience.2012.06.025

Cited by

  1. Artemisinin and the Nobel Prize in physiology or medicine 2015 vol.32, pp.3, 2019, https://doi.org/10.3344/kjp.2019.32.3.145
  2. Anti-Inflammatory, Antinociceptive, and Antioxidant Properties of Anacardic Acid in Experimental Models vol.5, pp.31, 2019, https://doi.org/10.1021/acsomega.0c01775
  3. Antinociception induced by artemisinin nanocapsule in a model of postoperative pain via spinal TLR4 inhibition vol.28, pp.6, 2019, https://doi.org/10.1007/s10787-020-00756-w
  4. Research Advances on Health Effects of Edible Artemisia Species and Some Sesquiterpene Lactones Constituents vol.10, pp.1, 2019, https://doi.org/10.3390/foods10010065
  5. Inflammatory cytokines in midbrain periaqueductal gray contribute to diabetic induced pain hypersensitivity through phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling p vol.34, pp.2, 2019, https://doi.org/10.3344/kjp.2021.34.2.176
  6. Endogenous opiates and behavior: 2019 vol.141, 2019, https://doi.org/10.1016/j.peptides.2021.170547