DOI QR코드

DOI QR Code

Draft genome sequence of humic substances-degrading Pseudomonas kribbensis CHA-19 from temperate forest soil

중위도 산림토양에서 분리한 부식질 분해능이 있는 Pseudomonas kribbensis CHA-19의 유전체 염기서열 초안

  • Kim, Dockyu (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Lee, Hyoungseok (Unit of Polar Genomics, Korea Polar Research Institute)
  • 김덕규 (극지연구소 극지생명과학연구부) ;
  • 이형석 (극지연구소 극지유전체사업단)
  • Received : 2019.04.11
  • Accepted : 2019.05.08
  • Published : 2019.06.30

Abstract

Pseudomonas kribbensis CHA-19 was isolated from a temperate forest soil (mid latitude) in New Jersey, USA, for its ability to degrade humic acids, a main component of humic substances (HS), and subsequently confirmed to be able to decolorize lignin (a surrogate for HS) and catabolize lignin-derived ferulic and vanillic acids. The draft genome sequence of CHA-19 was analyzed to discover the putative genes for depolymerization of polymeric HS (e.g., dye-decolorizing peroxidases and laccase-like multicopper oxidases) and catabolic degradation of HS-derived small aromatics (e.g., vanillate O-demethylase and biphenyl 2,3-dioxygenase). The genes for degradative activity were used to propose a HS degradation pathway of soil bacteria.

미국 뉴저지주 중위도 산림토양에서 부식산(천연 복합유기화합물인 부식질의 주요 구성성분) 분해능이 있는 세균 균주 Pseudomonas kribbensis CHA-19를 분리하였으며, 이후 또 다른 토양 유기물인 리그닌과 리그닌 유래의 페룰산(ferulic acid)과 바릴린산(vanillic acid)의 분해능을 확인하였다. 부식질 초기 저분자화 효소(예, dye-decolorizing peroxidase와 laccase-like multicopper oxidase)와 부식질 유래의 다양한 저분자 분해산물들을 분해하는 효소(예, vanillate O-demethylase와 biphenyl 2,3-dioxygenase)를 탐색하기 위해 CHA-19 게놈염기서열을 분석하였다. 최종 확보한 효소유전자 정보는 토양세균의 부식질 분해경로 제안에 사용되었다.

Keywords

MSMHBQ_2019_v55n2_177_f0001.png 이미지

Fig. 1. Proposed HS-degradative pathway by Pseudomonas kribbensis CHA-19.

References

  1. Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov AS, Lesin V, Nikolenko S, Pham S, Prjibelski A, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455-477. https://doi.org/10.1089/cmb.2012.0021
  2. Bugg TD, Ahmad M, Hardiman EM, and Rahmanpour R. 2011. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28, 1883-1896. https://doi.org/10.1039/c1np00042j
  3. Grinhut T, Hertkorn N, Schmitt-Kopplin P, Hadar Y, and Chen Y. 2011. Mechanisms of humic acids degradation by white rot fungi explored using $^1H$ NMR spectroscopy and FTICR mass spectrometry. Environ. Sci. Technol. 45, 2748-2754. https://doi.org/10.1021/es1036139
  4. Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, and Masai E. 2017. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. Environ. Microbiol. Rep. 9, 679-705. https://doi.org/10.1111/1758-2229.12597
  5. Kim D, Park HJ, Sul WJ, and Park H. 2018. Transcriptome analysis of Pseudomonas sp. from subarctic tundra soil: pathway description and gene discovery for humic acids degradation. Folia Microbiol. (Praha) 63, 315-323. https://doi.org/10.1007/s12223-017-0573-0
  6. Lipczynska-Kochany E. 2018. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere 202, 420-437. https://doi.org/10.1016/j.chemosphere.2018.03.104
  7. Lomsadze A, Gemayel K, Tang S, and Borodovsky M. 2018. Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes. Genome Res. 28, 1079-1089. https://doi.org/10.1101/gr.230615.117