Fig. 1. Proposed HS-degradative pathway by Pseudomonas kribbensis CHA-19.
References
- Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov AS, Lesin V, Nikolenko S, Pham S, Prjibelski A, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455-477. https://doi.org/10.1089/cmb.2012.0021
- Bugg TD, Ahmad M, Hardiman EM, and Rahmanpour R. 2011. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28, 1883-1896. https://doi.org/10.1039/c1np00042j
-
Grinhut T, Hertkorn N, Schmitt-Kopplin P, Hadar Y, and Chen Y. 2011. Mechanisms of humic acids degradation by white rot fungi explored using
$^1H$ NMR spectroscopy and FTICR mass spectrometry. Environ. Sci. Technol. 45, 2748-2754. https://doi.org/10.1021/es1036139 - Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, and Masai E. 2017. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. Environ. Microbiol. Rep. 9, 679-705. https://doi.org/10.1111/1758-2229.12597
- Kim D, Park HJ, Sul WJ, and Park H. 2018. Transcriptome analysis of Pseudomonas sp. from subarctic tundra soil: pathway description and gene discovery for humic acids degradation. Folia Microbiol. (Praha) 63, 315-323. https://doi.org/10.1007/s12223-017-0573-0
- Lipczynska-Kochany E. 2018. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere 202, 420-437. https://doi.org/10.1016/j.chemosphere.2018.03.104
- Lomsadze A, Gemayel K, Tang S, and Borodovsky M. 2018. Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes. Genome Res. 28, 1079-1089. https://doi.org/10.1101/gr.230615.117