DOI QR코드

DOI QR Code

Estimation of Heading Date using Mean Temperature and the Effect of Sowing Date on the Yield of Sweet Sorghum in Jellabuk Province

평균온도를 이용한 전북지역 단수수의 출수기 추정 및 파종시기별 수량 변화

  • Choi, Young Min (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Choi, Kyu-Hwan (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Shin, So-Hee (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Han, Hyun-Ah (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Heo, Byong Soo (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Kwon, Suk-Ju (Crops & Food Division, Jeollabuk-do Agricultural Research and Extension Services)
  • 최영민 (전라북도농업기술원 작물식품과) ;
  • 최규환 (전라북도농업기술원 작물식품과) ;
  • 신소희 (전라북도농업기술원 작물식품과) ;
  • 한현아 (전라북도농업기술원 작물식품과) ;
  • 허병수 (전라북도농업기술원 작물식품과) ;
  • 권석주 (전라북도농업기술원 작물식품과)
  • Received : 2019.04.04
  • Accepted : 2019.05.28
  • Published : 2019.06.30

Abstract

Sweet sorghum (Sorghum bicolor L. Moench), compared to traditional crops, has been evaluated as a useful crop with high adaptability to the environment and various uses, but cultivation has not expanded owing to a lack of related research and information in Korea. This study was conducted to estimate heading date in 'Chorong' sweet sorghum based on climate data of the last 30 years (1989 - 2018) from six regions (Jeonju, Buan, Jeongup, Imsil, Namwon, and Jangsu) in Jellabuk Province. In addition, we compared the growth and quality factors by sowing date (April 10, April 25, May 10, May 25, June 10, June 25, and July 10) in 2018. Days from sowing to heading (DSH) increased to 107, 96, 83, 70, 59, 64, and 65 days in order of the sowing dates, respectively, and the average was 77.7 days. The effective accumulated temperature for heading date was $1,120.3^{\circ}C$. The mean annual temperature was the highest in Jeonju, followed in descending order by Jeongup, Buan, Namwon, Imsil, and Jangsu. The DSH based on effective accumulated temperature gradually decreased in all sowing date treatments in the six regions during the last 30 years. DSH of the six regions showed a negative relationship with mean temperature (sowing date to heading date) and predicted DSH ($R^2=0.9987**$) calculated by mean temperature was explained with a probability of 89% of observed DSH in 2017 and 2018. At harvest, fresh stem weight and soluble solids content were higher in the April and July sowings, but sugar content was higher in the May 10 ($3.4Mg{\cdot}ha^{-1}$) and May 25 ($3.1Mg{\cdot}ha^{-1}$) sowings. Overall, the April and July sowings were of low quality and yield, and there is a risk of frost damage; thus, we found May sowings to be the most effective. Additionally, sowing dates must be considered in terms of proper harvest stage, harvesting target (juice or grain), cultivation altitude, and microclimate.

단수수(Sorghum bicolor L. Moench)는 전통적인 식량작물보다 높은 환경적응성과 다양한 용도로 유용한 작물로 평가받아 왔지만, 국내에서는 관련 연구 및 정보의 부족으로 재배가 확대되지 못하고 있다. 본 연구는 단수수 '초롱'의 전라북도 6개 지역(전주, 부안, 정읍, 임실, 남원, 장수)의 최근 30년(1989-2018년)간 기상자료에 근거한 출수기를 추정하고, 파종시기(4월 10일, 4월 25일, 5월 10일, 5월 25일, 6월 10일, 6월 25일)에 따른 생육 및 품질요인 등을 비교하고자 수행하였다. 파종부터 출수까지의 소요일수는 파종시기가 빠를수록 107, 96, 83, 70, 59, 64, 65일로 길어지는 경향을 보였으며, 평균출수소요일수는 77.7일이었다. 유효적산온도는 평균 $1,120.3^{\circ}C$이었다. 지역별 연평균온도는 전주, 정읍, 부안, 남원, 임실, 장수 순으로 높았으며, 평균온도는 지역별 출수소요일수와도 비슷한 경향이었다. 특히 유효적산온도로 산출한 최근 30년 동안 6개 지역의 출수소요일수는 모든 파종처리구에서 점차 감소하는 경향이었다. 또한 6개 지역에서 출수소요일수는 평균온도(파종~출수까지)와 부의 상관관계가 있는 것으로 나타났고, 2017, 2018년 평균온도를 이용하여 산출한 출수소요일수의 예측값은 관측값($R^2=0.9987**$)을 89%로 확률로 설명되었다. 수확기, 4월과 7월 파종은 각각 생경수량과 가용성 고형물 함량이 높았으나, 최종적인 당수량은 5월 10, 25일 파종이 각각 3.4, $3.1Mg{\cdot}ha^{-1}$로 가장 높았다. 4, 7월에 파종한 경우 각각 품질과 수량이 낮고 서리피해의 위험성이 있으므로 5월 파종하는 것이 효과적일 것으로 판단된다. 최종적인 파종시기의 결정은 적정 수확기, 작부체계, 수확대상(착즙액 또는 이삭), 재배지대, 미기상 등을 고려해야 할 것이다.

Keywords

JMHHBK_2019_v64n2_127_f0001.png 이미지

Fig. 1. Changes in stem length (A), diameter (B), and number of additional tillers (C) at the different sowing dates of sweet sorghum ‘Chorong’ in 2018. Vertical bars represent standard error of the means (n = 15).

JMHHBK_2019_v64n2_127_f0002.png 이미지

Fig. 2. Cardinal temperature (A) and precipitation (B) from sowing to heading date of the experimental area in 2018. Annual mean temperature (C) daily temperature range (D), and mean (E) and minimum temperature (F) in one quarter (May to July) of the six regions (Jeonju, Buan, Imsil, Jeongup, Namwon, and Jangsu) in Jellabuk-do measured automatic weather system in the last 30 years (1989 - 2018). The legends for C - F are the same.

JMHHBK_2019_v64n2_127_f0003.png 이미지

Fig. 4. Quadric regression results between mean temperature (sowing date to heading date) and days from sowing to heading (DSH) based on effective accumulated temperature (1,120.3℃) of sweet sorghum ‘Chorong’ of the six regions in Jellabuk-do in the last 30 years (1989 - 2018).

JMHHBK_2019_v64n2_127_f0004.png 이미지

Fig. 5. Linear regression results between predicted and observed days from sowing to heading (DSH) of sweet sorghum ‘Chorong’ in 2017 and 2018.

JMHHBK_2019_v64n2_127_f0005.png 이미지

Fig. 3. Changes in heading dates with different sowing dates based on effective accumulated temperature (1,120.3℃) of sweet sorghum ‘Chorong’ of the six regions in Jellabuk-do in the last 30 years (1989 - 2018). Y axis: days from sowing to heading. The graphs represent April 10 (A), April 25 (B), May 10 (C), May 25 (D), June 10 (E), June 25 (F), and July 10 (G) sowings.

Table 1. Changes in growing and developmental stage at the different sowing dates of sweet sorghum ‘Chorong’ in 2018.

JMHHBK_2019_v64n2_127_t0001.png 이미지

Table 2. Changes in mean and range values of days from sowing to heading for the different sowing dates based on effective accumulated temperature (1,120.3℃) of sweet sorghum ‘Chorong’ of the six regions in Jellabuk-do in the last 30 years (1989 - 2018).

JMHHBK_2019_v64n2_127_t0002.png 이미지

Table 3. Comparison of soluble solids content (SSC), fresh stem yield (FSY), dry stem yield (DSY), juice yield (JY), sugar yield (SY), sucrose content (SC), juice purity (JP), and ear weight (EW) by the different sowing dates in sweet sorghum ‘Chorong’ at harvest (50 days after heading date).

JMHHBK_2019_v64n2_127_t0003.png 이미지

References

  1. Almodares, A. and S. M. Mostafafi Darany. 2006. Effects of planting date and time of nitrogen application on yield and sugar content of sweet sorghum. J. Environ. Bio. 27(3) : 601-605.
  2. Almodares, A., R. Taheri, and S. Adeli. 2008. Stalk yield and carbohydrate composition of sweet sorghum (Sorghum bicolor L. Moench) cultivars and lines at different growth stages. Mala. J. Applied Biol. 37(1) : 31-36.
  3. Anten, N. P. R., F. Schieving, E. Medina, M. J. A. Werger, and P. Schuffelen. 1995. Optimal leaf area indices in $C_3$ and $C_4$ mono- and dicotyledonous species at low and high nitrogen availability. Physiologia Plantarum 95(4) : 541-550. https://doi.org/10.1111/j.1399-3054.1995.tb05520.x
  4. Balole, T. V. 2001. Strategies to improve yield and quality of sweet sorghum as a cash crop for small scale farmers in Botswana. PhD. Thesis, University of Pretoria, South Africa.
  5. Bang, J. K., Y. B. Kim, S. S. Nam, S. H. Ahn, and S. J. Suh. 2009. Variation of major characters in sweet sorghum germplasm for bioethanol. J. Kor. Soc. Intern. Agric. 21(3) : 189-192.
  6. Benoit, G. R., A. L. Hatfield, and J. L. Ragland. 1965. The growth and yield of corn. Soil moisture and temperature effects. Agronomy J. 57(2) : 223-226. https://doi.org/10.2134/agronj1965.00021962005700020027x
  7. Bian, Y. L., S. Yazaki, I. Maiko, and H. W. Caih. 2006. QTLs for sugar content of stalk in sweet sorghum (Sorghum bicolor L. Moench). Agric. Sci. China 5(10) : 736-744. https://doi.org/10.1016/S1671-2927(06)60118-1
  8. Carpita, N. C. and M. C. McCann. 2008. Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci. 13(8) : 415-420. https://doi.org/10.1016/j.tplants.2008.06.002
  9. Choi, Y. M., H. A. Han, S. H. Shin, B. S. Heo, K. H. Choi, and S. J. Kwon. 2019. Effect of planting density on growth and yield components of the sweet sorghum cultivar, 'Chorong'. Kor. J. Crop Sci. 64(1) : 40-47. https://doi.org/10.7740/KJCS.2019.64.1.040
  10. Clerget, B., H. F. W. Rattunde, S. Dagnoko, and J. Chantereau. 2007. An easy way to assess photoperiod sensitivity in sorghum: Relationships of the vegetative-phase duration and photoperiod sensitivity. J. SAT Agric. Res. 3(1) : 1-3.
  11. Coleman, O. H. and B. A. Belcher. 1952. Some responses of sorgo to short photoperiods and variations in temperature. Agronomy J. 44(1) : 35-39. https://doi.org/10.2134/agronj1952.00021962004400010010x
  12. Cowley, W. R. and R. A. Smith. 1971. Sweet sorghum as a potential sugar crop in south Texas. Proc. Intern. Soc. Sugar Cane Technol. 14 : 628-633.
  13. Cuevas, H. E., C. Zhou, H. Tang, P. P. Khadke, S. Das, Y. R. Lin, Z. Ge, T. Clemente, H. D. Upadhyaya, C. T. Hash, and A. H. Paterson. 2016. The evolution of photoperiod-insensitive flowering in sorghum, a genomic model for panicoid grasses. Molecular. biol. and Evolution. 33(9) : 2417-2428. https://doi.org/10.1093/molbev/msw120
  14. Gibson, S. 2009. Bioenergy crops "Sweet sorghum". Advanta Seeds Ltd. Austrilia. p. 1-7.
  15. Gnasounou, E., A. Dauriat, and C. E. Wyman. 2005. Refining sweet sorghum to ethanol and sugar: economic trade - AFFS in the context of North China. Bioresource Technol. 96 : 985-1002. https://doi.org/10.1016/j.biortech.2004.09.015
  16. Hipp, B. W., W. R. Cowley, C. J. Gerad, and A. B. Smiti. 1970. Influence of solar radiation and date of planting on yield of sweet sorghum. Crop Sci. 10(1) : 91-92. https://doi.org/10.2135/cropsci1970.0011183X001000010033x
  17. Hoshikawa, K., S. Nakamura, Y. Goto, M. Tanaka, and T. Kabeya. 1994. Relationships between changes in the heading date and yield-related traits of sweet sorghum (Sorghum bicolor Moench) in the northern area of Japan. Jap. J. Crop Sci. 63(4) : 610-615. https://doi.org/10.1626/jcs.63.610
  18. Kim, S. K. 2013. Occurrence pattern of water core at various altitude in 'Fuji' and 'Hongro' apple. Master's Thesis, University of Chonbuk, Republic of Korea.
  19. Kwon, O. S., H. K. Cho, E. B. Cho, and J. S. Roh. 2013. Climate Variables and Rice Productivity: A semi parametric analysis using panel regional data. Kor. J. Agric. Economics 54(3) : 71-94.
  20. Liu, C. and F. Wang. 2008. Sweet sorghum: A promising crop for bioethanol. J. Biotech. 136(S) : 456-456.
  21. Neild, R. E. and J. K. Greig. 1971. An agroclimatic procedure to determine growing seasons for vegetables. Agric. Meteor. 9 : 225-240. https://doi.org/10.1016/0002-1571(71)90024-0
  22. Neild, R. E. and M. W. Seeley. 1977. Growing degree days predictions for corn and sorghum development and some applications to crop production in Nebraska. Historical Research Bulletins of the Nebraska Agricultural Experiment Station 41.
  23. Ozkan, B., and H. Akcaoz, 2002: Impacts of climate factors on yields for selected crops in the southern Turkey, Mitigation and Adaptation Strategies for Global Change 7(4) : 367-380. https://doi.org/10.1023/A:1024792318063
  24. Petrini, C., A. Belletti, and F. Salamin. 1993. Accumulation and distribution of dry matter and soluble carbohydrates in two sweet sorghum cultivars; influence of sowing date and harvesting time. Euro. J. Agron. 2 : 185-192. https://doi.org/10.1016/S1161-0301(14)80128-7
  25. RDA (Rural Development Administration). 2002. Research trends of climate change and changes in Agricultural Ecosystems. Jeonju, Korea.
  26. RDA (Rural Development Administration). 2016. Standard farming handbook. 'SORGHUM'. Jeonju, Korea.
  27. Shukla, S., T. J. Felderhoff, A. Saballos, and W. Vermerris. 2017. The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor L. Moench). Field Crops Res. 203 : 181-191. https://doi.org/10.1016/j.fcr.2016.12.004
  28. Slafer, G. A., D. J. Connor, and G. M. Halloran. 1994. Rate of leaf appearance and final number of leaves in wheat effects of duration and rate of change of photoperiod. Annals of Botany 74(5) : 427-436. https://doi.org/10.1006/anbo.1994.1138
  29. Tao, F. and Z. Zhang. 2010. Adaptation of maize production to climate change in North China Plain: quantify the relative contributions of adaptation options. Euro. J. Agronomy 33(2) : 103-116. https://doi.org/10.1016/j.eja.2010.04.002
  30. Teetor, V. H., D. V. Duclos, E. T. Wittenberg, K. M. Young, J. Chawhuaymak, M. R. Riley, and D. T. Ray. 2011. Effects of planting date on sugar and ethanol yield of sweet sorghum grown in Arizona. Industrial Crops and Products 34(2) : 1293-1300. https://doi.org/10.1016/j.indcrop.2010.09.010
  31. Tsuchihashi, N. and Y. Goto. 2004. Cultivation of sweet sorghum (Sorghum bicolor L. Moench) and determination of its harvest time to make use as the raw material for fermentation, practiced during rainy season in dry land of Indonesia. Plant Production Sci. 7(4) : 442-448. https://doi.org/10.1626/pps.7.442
  32. Wortmann, C. S., A. J. Liska, R. B. Ferguson, D. J. Lyon, R. N. Klein, and I. Dewikat. 2010. Dryland performance of sweet sorghum and grain crops for biofuel in Nebraska. Agronomy J. 102(1) : 319-326. https://doi.org/10.2134/agronj2009.0271
  33. Yang, W., S. kang, S. Kim, J. S. Choi, and J. H. Park. 2018. Assessment of the safe rice cropping period based on temperature data in different regions of North Korea. Kor. J. Agric. Forest Meteor. 20(2) : 190-204. https://doi.org/10.5532/KJAFM.2018.20.2.190
  34. Yoshida, S. 1981. Fundamentals of rice crop science. Los Banos, Philippines, IRRI.
  35. Yun, J. I. 2002. Urbanization effect on observed warming in Korea during the recent half century. Kor. J. Agric. Forest Meteor. 4(1) : 58-63.